SetFit with sentence-transformers/all-MiniLM-L6-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-MiniLM-L6-v2
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 256 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.6441 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("amplyfi/all-MiniLM-L6-v2_multiclass_multilabel")
# Run inference
preds = model("Ofgem’s response to DECC energy policy announcement")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 4 | 9.9729 | 30 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0005 | 1 | 0.4684 | - |
0.0226 | 50 | 0.3194 | - |
0.0452 | 100 | 0.2968 | - |
0.0678 | 150 | 0.2868 | - |
0.0904 | 200 | 0.2423 | - |
0.1130 | 250 | 0.2277 | - |
0.1356 | 300 | 0.2117 | - |
0.1582 | 350 | 0.2058 | - |
0.1808 | 400 | 0.2099 | - |
0.2033 | 450 | 0.2022 | - |
0.2259 | 500 | 0.1849 | - |
0.2485 | 550 | 0.1815 | - |
0.2711 | 600 | 0.1617 | - |
0.2937 | 650 | 0.1606 | - |
0.3163 | 700 | 0.1465 | - |
0.3389 | 750 | 0.1425 | - |
0.3615 | 800 | 0.138 | - |
0.3841 | 850 | 0.132 | - |
0.4067 | 900 | 0.1212 | - |
0.4293 | 950 | 0.128 | - |
0.4519 | 1000 | 0.1129 | - |
0.4745 | 1050 | 0.1093 | - |
0.4971 | 1100 | 0.1155 | - |
0.5197 | 1150 | 0.1066 | - |
0.5423 | 1200 | 0.0984 | - |
0.5648 | 1250 | 0.0926 | - |
0.5874 | 1300 | 0.0915 | - |
0.6100 | 1350 | 0.0844 | - |
0.6326 | 1400 | 0.0904 | - |
0.6552 | 1450 | 0.0772 | - |
0.6778 | 1500 | 0.0751 | - |
0.7004 | 1550 | 0.0786 | - |
0.7230 | 1600 | 0.0659 | - |
0.7456 | 1650 | 0.0602 | - |
0.7682 | 1700 | 0.0661 | - |
0.7908 | 1750 | 0.0758 | - |
0.8134 | 1800 | 0.0698 | - |
0.8360 | 1850 | 0.0621 | - |
0.8586 | 1900 | 0.0631 | - |
0.8812 | 1950 | 0.0621 | - |
0.9038 | 2000 | 0.055 | - |
0.9263 | 2050 | 0.0453 | - |
0.9489 | 2100 | 0.0509 | - |
0.9715 | 2150 | 0.0515 | - |
0.9941 | 2200 | 0.0558 | - |
1.0167 | 2250 | 0.0449 | - |
1.0393 | 2300 | 0.0456 | - |
1.0619 | 2350 | 0.0391 | - |
1.0845 | 2400 | 0.0431 | - |
1.1071 | 2450 | 0.0454 | - |
1.1297 | 2500 | 0.0342 | - |
1.1523 | 2550 | 0.0414 | - |
1.1749 | 2600 | 0.0325 | - |
1.1975 | 2650 | 0.039 | - |
1.2201 | 2700 | 0.0376 | - |
1.2427 | 2750 | 0.0303 | - |
1.2653 | 2800 | 0.0289 | - |
1.2878 | 2850 | 0.0307 | - |
1.3104 | 2900 | 0.0359 | - |
1.3330 | 2950 | 0.0333 | - |
1.3556 | 3000 | 0.0364 | - |
1.3782 | 3050 | 0.028 | - |
1.4008 | 3100 | 0.0403 | - |
1.4234 | 3150 | 0.0318 | - |
1.4460 | 3200 | 0.0281 | - |
1.4686 | 3250 | 0.025 | - |
1.4912 | 3300 | 0.0228 | - |
1.5138 | 3350 | 0.0265 | - |
1.5364 | 3400 | 0.0248 | - |
1.5590 | 3450 | 0.025 | - |
1.5816 | 3500 | 0.0181 | - |
1.6042 | 3550 | 0.0214 | - |
1.6268 | 3600 | 0.0208 | - |
1.6493 | 3650 | 0.028 | - |
1.6719 | 3700 | 0.0169 | - |
1.6945 | 3750 | 0.0238 | - |
1.7171 | 3800 | 0.0237 | - |
1.7397 | 3850 | 0.0208 | - |
1.7623 | 3900 | 0.0186 | - |
1.7849 | 3950 | 0.0168 | - |
1.8075 | 4000 | 0.0217 | - |
1.8301 | 4050 | 0.0215 | - |
1.8527 | 4100 | 0.0246 | - |
1.8753 | 4150 | 0.0208 | - |
1.8979 | 4200 | 0.0229 | - |
1.9205 | 4250 | 0.0233 | - |
1.9431 | 4300 | 0.0174 | - |
1.9657 | 4350 | 0.0158 | - |
1.9883 | 4400 | 0.0177 | - |
2.0108 | 4450 | 0.0182 | - |
2.0334 | 4500 | 0.0215 | - |
2.0560 | 4550 | 0.0151 | - |
2.0786 | 4600 | 0.0128 | - |
2.1012 | 4650 | 0.0144 | - |
2.1238 | 4700 | 0.0176 | - |
2.1464 | 4750 | 0.0161 | - |
2.1690 | 4800 | 0.0179 | - |
2.1916 | 4850 | 0.0151 | - |
2.2142 | 4900 | 0.0119 | - |
2.2368 | 4950 | 0.0143 | - |
2.2594 | 5000 | 0.0126 | - |
2.2820 | 5050 | 0.0151 | - |
2.3046 | 5100 | 0.0183 | - |
2.3272 | 5150 | 0.0189 | - |
2.3498 | 5200 | 0.0155 | - |
2.3723 | 5250 | 0.0166 | - |
2.3949 | 5300 | 0.0167 | - |
2.4175 | 5350 | 0.0171 | - |
2.4401 | 5400 | 0.0177 | - |
2.4627 | 5450 | 0.014 | - |
2.4853 | 5500 | 0.0143 | - |
2.5079 | 5550 | 0.0127 | - |
2.5305 | 5600 | 0.0133 | - |
2.5531 | 5650 | 0.0125 | - |
2.5757 | 5700 | 0.0116 | - |
2.5983 | 5750 | 0.0141 | - |
2.6209 | 5800 | 0.0119 | - |
2.6435 | 5850 | 0.0149 | - |
2.6661 | 5900 | 0.011 | - |
2.6887 | 5950 | 0.0192 | - |
2.7113 | 6000 | 0.0137 | - |
2.7338 | 6050 | 0.01 | - |
2.7564 | 6100 | 0.0113 | - |
2.7790 | 6150 | 0.0127 | - |
2.8016 | 6200 | 0.0129 | - |
2.8242 | 6250 | 0.0121 | - |
2.8468 | 6300 | 0.0156 | - |
2.8694 | 6350 | 0.0136 | - |
2.8920 | 6400 | 0.0142 | - |
2.9146 | 6450 | 0.0119 | - |
2.9372 | 6500 | 0.0125 | - |
2.9598 | 6550 | 0.0075 | - |
2.9824 | 6600 | 0.0134 | - |
3.0050 | 6650 | 0.0138 | - |
3.0276 | 6700 | 0.0095 | - |
3.0502 | 6750 | 0.0102 | - |
3.0728 | 6800 | 0.0108 | - |
3.0953 | 6850 | 0.0115 | - |
3.1179 | 6900 | 0.0125 | - |
3.1405 | 6950 | 0.0104 | - |
3.1631 | 7000 | 0.011 | - |
3.1857 | 7050 | 0.0102 | - |
3.2083 | 7100 | 0.0135 | - |
3.2309 | 7150 | 0.0092 | - |
3.2535 | 7200 | 0.0106 | - |
3.2761 | 7250 | 0.0112 | - |
3.2987 | 7300 | 0.0094 | - |
3.3213 | 7350 | 0.0084 | - |
3.3439 | 7400 | 0.0115 | - |
3.3665 | 7450 | 0.008 | - |
3.3891 | 7500 | 0.0155 | - |
3.4117 | 7550 | 0.0125 | - |
3.4343 | 7600 | 0.0094 | - |
3.4568 | 7650 | 0.0098 | - |
3.4794 | 7700 | 0.0121 | - |
3.5020 | 7750 | 0.0136 | - |
3.5246 | 7800 | 0.0103 | - |
3.5472 | 7850 | 0.0095 | - |
3.5698 | 7900 | 0.012 | - |
3.5924 | 7950 | 0.0115 | - |
3.6150 | 8000 | 0.0119 | - |
3.6376 | 8050 | 0.0096 | - |
3.6602 | 8100 | 0.009 | - |
3.6828 | 8150 | 0.0089 | - |
3.7054 | 8200 | 0.0141 | - |
3.7280 | 8250 | 0.0096 | - |
3.7506 | 8300 | 0.0095 | - |
3.7732 | 8350 | 0.0092 | - |
3.7958 | 8400 | 0.0114 | - |
3.8183 | 8450 | 0.009 | - |
3.8409 | 8500 | 0.0107 | - |
3.8635 | 8550 | 0.0116 | - |
3.8861 | 8600 | 0.0068 | - |
3.9087 | 8650 | 0.0107 | - |
3.9313 | 8700 | 0.0143 | - |
3.9539 | 8750 | 0.0094 | - |
3.9765 | 8800 | 0.0105 | - |
3.9991 | 8850 | 0.0092 | - |
4.0217 | 8900 | 0.0086 | - |
4.0443 | 8950 | 0.0082 | - |
4.0669 | 9000 | 0.0125 | - |
4.0895 | 9050 | 0.0084 | - |
4.1121 | 9100 | 0.009 | - |
4.1347 | 9150 | 0.0107 | - |
4.1573 | 9200 | 0.0091 | - |
4.1798 | 9250 | 0.0112 | - |
4.2024 | 9300 | 0.0098 | - |
4.2250 | 9350 | 0.0106 | - |
4.2476 | 9400 | 0.0096 | - |
4.2702 | 9450 | 0.0073 | - |
4.2928 | 9500 | 0.0084 | - |
4.3154 | 9550 | 0.0091 | - |
4.3380 | 9600 | 0.0073 | - |
4.3606 | 9650 | 0.0116 | - |
4.3832 | 9700 | 0.01 | - |
4.4058 | 9750 | 0.0086 | - |
4.4284 | 9800 | 0.0079 | - |
4.4510 | 9850 | 0.0105 | - |
4.4736 | 9900 | 0.0107 | - |
4.4962 | 9950 | 0.0076 | - |
4.5188 | 10000 | 0.0074 | - |
4.5413 | 10050 | 0.0062 | - |
4.5639 | 10100 | 0.0103 | - |
4.5865 | 10150 | 0.0065 | - |
4.6091 | 10200 | 0.0093 | - |
4.6317 | 10250 | 0.0085 | - |
4.6543 | 10300 | 0.0085 | - |
4.6769 | 10350 | 0.0088 | - |
4.6995 | 10400 | 0.0098 | - |
4.7221 | 10450 | 0.0067 | - |
4.7447 | 10500 | 0.009 | - |
4.7673 | 10550 | 0.0109 | - |
4.7899 | 10600 | 0.0083 | - |
4.8125 | 10650 | 0.0082 | - |
4.8351 | 10700 | 0.008 | - |
4.8577 | 10750 | 0.0098 | - |
4.8803 | 10800 | 0.0078 | - |
4.9028 | 10850 | 0.0097 | - |
4.9254 | 10900 | 0.0078 | - |
4.9480 | 10950 | 0.0076 | - |
4.9706 | 11000 | 0.0078 | - |
4.9932 | 11050 | 0.0076 | - |
5.0158 | 11100 | 0.0091 | - |
5.0384 | 11150 | 0.007 | - |
5.0610 | 11200 | 0.0081 | - |
5.0836 | 11250 | 0.0085 | - |
5.1062 | 11300 | 0.0076 | - |
5.1288 | 11350 | 0.0063 | - |
5.1514 | 11400 | 0.0086 | - |
5.1740 | 11450 | 0.0077 | - |
5.1966 | 11500 | 0.0081 | - |
5.2192 | 11550 | 0.008 | - |
5.2418 | 11600 | 0.0076 | - |
5.2643 | 11650 | 0.0072 | - |
5.2869 | 11700 | 0.0086 | - |
5.3095 | 11750 | 0.0077 | - |
5.3321 | 11800 | 0.0073 | - |
5.3547 | 11850 | 0.0064 | - |
5.3773 | 11900 | 0.0073 | - |
5.3999 | 11950 | 0.0068 | - |
5.4225 | 12000 | 0.0066 | - |
5.4451 | 12050 | 0.0077 | - |
5.4677 | 12100 | 0.0063 | - |
5.4903 | 12150 | 0.0087 | - |
5.5129 | 12200 | 0.0061 | - |
5.5355 | 12250 | 0.0086 | - |
5.5581 | 12300 | 0.0096 | - |
5.5807 | 12350 | 0.0091 | - |
5.6033 | 12400 | 0.0069 | - |
5.6258 | 12450 | 0.0071 | - |
5.6484 | 12500 | 0.0067 | - |
5.6710 | 12550 | 0.0095 | - |
5.6936 | 12600 | 0.0089 | - |
5.7162 | 12650 | 0.009 | - |
5.7388 | 12700 | 0.0087 | - |
5.7614 | 12750 | 0.0078 | - |
5.7840 | 12800 | 0.0066 | - |
5.8066 | 12850 | 0.0091 | - |
5.8292 | 12900 | 0.0084 | - |
5.8518 | 12950 | 0.0078 | - |
5.8744 | 13000 | 0.0088 | - |
5.8970 | 13050 | 0.008 | - |
5.9196 | 13100 | 0.0079 | - |
5.9422 | 13150 | 0.0083 | - |
5.9648 | 13200 | 0.0083 | - |
5.9873 | 13250 | 0.0086 | - |
6.0099 | 13300 | 0.0089 | - |
6.0325 | 13350 | 0.0055 | - |
6.0551 | 13400 | 0.0072 | - |
6.0777 | 13450 | 0.005 | - |
6.1003 | 13500 | 0.0066 | - |
6.1229 | 13550 | 0.0065 | - |
6.1455 | 13600 | 0.0083 | - |
6.1681 | 13650 | 0.0066 | - |
6.1907 | 13700 | 0.006 | - |
6.2133 | 13750 | 0.0064 | - |
6.2359 | 13800 | 0.0078 | - |
6.2585 | 13850 | 0.0105 | - |
6.2811 | 13900 | 0.009 | - |
6.3037 | 13950 | 0.0062 | - |
6.3263 | 14000 | 0.0077 | - |
6.3488 | 14050 | 0.0082 | - |
6.3714 | 14100 | 0.0066 | - |
6.3940 | 14150 | 0.0075 | - |
6.4166 | 14200 | 0.0089 | - |
6.4392 | 14250 | 0.0062 | - |
6.4618 | 14300 | 0.0072 | - |
6.4844 | 14350 | 0.0068 | - |
6.5070 | 14400 | 0.0066 | - |
6.5296 | 14450 | 0.0062 | - |
6.5522 | 14500 | 0.0078 | - |
6.5748 | 14550 | 0.0087 | - |
6.5974 | 14600 | 0.0068 | - |
6.6200 | 14650 | 0.0058 | - |
6.6426 | 14700 | 0.0069 | - |
6.6652 | 14750 | 0.0087 | - |
6.6878 | 14800 | 0.0067 | - |
6.7103 | 14850 | 0.0084 | - |
6.7329 | 14900 | 0.0078 | - |
6.7555 | 14950 | 0.0079 | - |
6.7781 | 15000 | 0.0062 | - |
6.8007 | 15050 | 0.0073 | - |
6.8233 | 15100 | 0.0061 | - |
6.8459 | 15150 | 0.0064 | - |
6.8685 | 15200 | 0.0062 | - |
6.8911 | 15250 | 0.0067 | - |
6.9137 | 15300 | 0.0074 | - |
6.9363 | 15350 | 0.0065 | - |
6.9589 | 15400 | 0.0081 | - |
6.9815 | 15450 | 0.0073 | - |
7.0041 | 15500 | 0.0081 | - |
7.0267 | 15550 | 0.0057 | - |
7.0493 | 15600 | 0.0061 | - |
7.0718 | 15650 | 0.006 | - |
7.0944 | 15700 | 0.0067 | - |
7.1170 | 15750 | 0.0061 | - |
7.1396 | 15800 | 0.0069 | - |
7.1622 | 15850 | 0.0079 | - |
7.1848 | 15900 | 0.0075 | - |
7.2074 | 15950 | 0.0068 | - |
7.2300 | 16000 | 0.0082 | - |
7.2526 | 16050 | 0.0061 | - |
7.2752 | 16100 | 0.0066 | - |
7.2978 | 16150 | 0.0067 | - |
7.3204 | 16200 | 0.0056 | - |
7.3430 | 16250 | 0.0067 | - |
7.3656 | 16300 | 0.0078 | - |
7.3882 | 16350 | 0.0075 | - |
7.4108 | 16400 | 0.0075 | - |
7.4333 | 16450 | 0.0068 | - |
7.4559 | 16500 | 0.0065 | - |
7.4785 | 16550 | 0.0069 | - |
7.5011 | 16600 | 0.0063 | - |
7.5237 | 16650 | 0.006 | - |
7.5463 | 16700 | 0.0071 | - |
7.5689 | 16750 | 0.0065 | - |
7.5915 | 16800 | 0.0069 | - |
7.6141 | 16850 | 0.0067 | - |
7.6367 | 16900 | 0.0051 | - |
7.6593 | 16950 | 0.0052 | - |
7.6819 | 17000 | 0.0064 | - |
7.7045 | 17050 | 0.0056 | - |
7.7271 | 17100 | 0.0054 | - |
7.7497 | 17150 | 0.0083 | - |
7.7723 | 17200 | 0.0082 | - |
7.7948 | 17250 | 0.0066 | - |
7.8174 | 17300 | 0.0071 | - |
7.8400 | 17350 | 0.0066 | - |
7.8626 | 17400 | 0.0086 | - |
7.8852 | 17450 | 0.0082 | - |
7.9078 | 17500 | 0.0072 | - |
7.9304 | 17550 | 0.0071 | - |
7.9530 | 17600 | 0.0066 | - |
7.9756 | 17650 | 0.0055 | - |
7.9982 | 17700 | 0.0048 | - |
8.0208 | 17750 | 0.0071 | - |
8.0434 | 17800 | 0.0065 | - |
8.0660 | 17850 | 0.006 | - |
8.0886 | 17900 | 0.006 | - |
8.1112 | 17950 | 0.0067 | - |
8.1338 | 18000 | 0.0064 | - |
8.1563 | 18050 | 0.0066 | - |
8.1789 | 18100 | 0.0063 | - |
8.2015 | 18150 | 0.0056 | - |
8.2241 | 18200 | 0.0053 | - |
8.2467 | 18250 | 0.0061 | - |
8.2693 | 18300 | 0.0061 | - |
8.2919 | 18350 | 0.006 | - |
8.3145 | 18400 | 0.0071 | - |
8.3371 | 18450 | 0.0064 | - |
8.3597 | 18500 | 0.006 | - |
8.3823 | 18550 | 0.0059 | - |
8.4049 | 18600 | 0.0065 | - |
8.4275 | 18650 | 0.0075 | - |
8.4501 | 18700 | 0.007 | - |
8.4727 | 18750 | 0.0052 | - |
8.4953 | 18800 | 0.0056 | - |
8.5178 | 18850 | 0.0056 | - |
8.5404 | 18900 | 0.0068 | - |
8.5630 | 18950 | 0.0063 | - |
8.5856 | 19000 | 0.0056 | - |
8.6082 | 19050 | 0.0071 | - |
8.6308 | 19100 | 0.0065 | - |
8.6534 | 19150 | 0.0049 | - |
8.6760 | 19200 | 0.009 | - |
8.6986 | 19250 | 0.0081 | - |
8.7212 | 19300 | 0.0076 | - |
8.7438 | 19350 | 0.0083 | - |
8.7664 | 19400 | 0.0063 | - |
8.7890 | 19450 | 0.0068 | - |
8.8116 | 19500 | 0.0048 | - |
8.8342 | 19550 | 0.0056 | - |
8.8568 | 19600 | 0.005 | - |
8.8793 | 19650 | 0.0069 | - |
8.9019 | 19700 | 0.005 | - |
8.9245 | 19750 | 0.0066 | - |
8.9471 | 19800 | 0.0064 | - |
8.9697 | 19850 | 0.0073 | - |
8.9923 | 19900 | 0.0048 | - |
9.0149 | 19950 | 0.0066 | - |
9.0375 | 20000 | 0.006 | - |
9.0601 | 20050 | 0.006 | - |
9.0827 | 20100 | 0.005 | - |
9.1053 | 20150 | 0.0064 | - |
9.1279 | 20200 | 0.0066 | - |
9.1505 | 20250 | 0.0062 | - |
9.1731 | 20300 | 0.0058 | - |
9.1957 | 20350 | 0.0065 | - |
9.2183 | 20400 | 0.0065 | - |
9.2408 | 20450 | 0.0049 | - |
9.2634 | 20500 | 0.0071 | - |
9.2860 | 20550 | 0.0075 | - |
9.3086 | 20600 | 0.006 | - |
9.3312 | 20650 | 0.0061 | - |
9.3538 | 20700 | 0.006 | - |
9.3764 | 20750 | 0.0049 | - |
9.3990 | 20800 | 0.0061 | - |
9.4216 | 20850 | 0.0064 | - |
9.4442 | 20900 | 0.0053 | - |
9.4668 | 20950 | 0.0062 | - |
9.4894 | 21000 | 0.0065 | - |
9.5120 | 21050 | 0.0063 | - |
9.5346 | 21100 | 0.0068 | - |
9.5572 | 21150 | 0.0053 | - |
9.5798 | 21200 | 0.0058 | - |
9.6023 | 21250 | 0.0063 | - |
9.6249 | 21300 | 0.0049 | - |
9.6475 | 21350 | 0.0058 | - |
9.6701 | 21400 | 0.0057 | - |
9.6927 | 21450 | 0.0041 | - |
9.7153 | 21500 | 0.0068 | - |
9.7379 | 21550 | 0.0069 | - |
9.7605 | 21600 | 0.0077 | - |
9.7831 | 21650 | 0.0072 | - |
9.8057 | 21700 | 0.0066 | - |
9.8283 | 21750 | 0.0058 | - |
9.8509 | 21800 | 0.0066 | - |
9.8735 | 21850 | 0.0061 | - |
9.8961 | 21900 | 0.0068 | - |
9.9187 | 21950 | 0.0061 | - |
9.9413 | 22000 | 0.0057 | - |
9.9638 | 22050 | 0.0061 | - |
9.9864 | 22100 | 0.0054 | - |
Framework Versions
- Python: 3.12.8
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu124
- Datasets: 3.2.0
- Tokenizers: 0.20.3
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 2
Inference API (serverless) has been turned off for this model.
Model tree for amplyfi/all-MiniLM-L6-v2_multiclass_multilabel
Base model
sentence-transformers/all-MiniLM-L6-v2