metadata
license: mit
datasets:
- amphion/Emilia-Dataset
language:
- en
- zh
- ko
- ja
- fr
- de
base_model:
- amphion/MaskGCT
pipeline_tag: text-to-speech
MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer
Quickstart
Clone and install
git clone https://github.com/open-mmlab/Amphion.git
# create env
bash ./models/tts/maskgct/env.sh
Model download
We provide the following pretrained checkpoints:
Model Name | Description |
---|---|
Acoustic Codec | Converting speech to semantic tokens. |
Semantic Codec | Converting speech to acoustic tokens and reconstructing waveform from acoustic tokens. |
MaskGCT-T2S | Predicting semantic tokens with text and prompt semantic tokens. |
MaskGCT-S2A | Predicts acoustic tokens conditioned on semantic tokens. |
You can download all pretrained checkpoints from HuggingFace or use huggingface api.
from huggingface_hub import hf_hub_download
# download semantic codec ckpt
semantic_code_ckpt = hf_hub_download("amphion/MaskGCT" filename="semantic_codec/model.safetensors")
# download acoustic codec ckpt
codec_encoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model.safetensors")
codec_decoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model_1.safetensors")
# download t2s model ckpt
t2s_model_ckpt = hf_hub_download("amphion/MaskGCT", filename="t2s_model/model.safetensors")
# download s2a model ckpt
s2a_1layer_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_1layer/model.safetensors")
s2a_full_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_full/model.safetensors")
Basic Usage
You can use the following code to generate speech from text and a prompt speech.
from models.tts.maskgct.maskgct_utils import *
from huggingface_hub import hf_hub_download
import safetensors
import soundfile as sf
if __name__ == "__main__":
# build model
device = torch.device("cuda:0")
cfg_path = "./models/tts/maskgct/config/maskgct.json"
cfg = load_config(cfg_path)
# 1. build semantic model (w2v-bert-2.0)
semantic_model, semantic_mean, semantic_std = build_semantic_model(device)
# 2. build semantic codec
semantic_codec = build_semantic_codec(cfg.model.semantic_codec, device)
# 3. build acoustic codec
codec_encoder, codec_decoder = build_acoustic_codec(cfg.model.acoustic_codec, device)
# 4. build t2s model
t2s_model = build_t2s_model(cfg.model.t2s_model, device)
# 5. build s2a model
s2a_model_1layer = build_s2a_model(cfg.model.s2a_model.s2a_1layer, device)
s2a_model_full = build_s2a_model(cfg.model.s2a_model.s2a_full, device)
# download checkpoint
...
# load semantic codec
safetensors.torch.load_model(semantic_codec, semantic_code_ckpt)
# load acoustic codec
safetensors.torch.load_model(codec_encoder, codec_encoder_ckpt)
safetensors.torch.load_model(codec_decoder, codec_decoder_ckpt)
# load t2s model
safetensors.torch.load_model(t2s_model, t2s_model_ckpt)
# load s2a model
safetensors.torch.load_model(s2a_model_1layer, s2a_1layer_ckpt)
safetensors.torch.load_model(s2a_model_full, s2a_full_ckpt)
# inference
prompt_wav_path = "./models/tts/maskgct/wav/prompt.wav"
save_path = "[YOUR SAVE PATH]"
prompt_text = " We do not break. We never give in. We never back down."
target_text = "In this paper, we introduce MaskGCT, a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision."
# Specify the target duration (in seconds). If target_len = None, we use a simple rule to predict the target duration.
target_len = 18
recovered_audio = maskgct_inference(prompt_wav_path, prompt_text, target_text, "en", "en", target_len=target_len)
sf.write(save_path, recovered_audio, 24000)