Text-to-Speech
Safetensors
MaskGCT / README.md
Hecheng0625's picture
Create README.md
357e18b verified
|
raw
history blame
4.81 kB
metadata
license: mit
datasets:
  - amphion/Emilia-Dataset
language:
  - en
  - zh
  - ko
  - ja
  - fr
  - de
base_model:
  - amphion/MaskGCT
pipeline_tag: text-to-speech

MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer

arXiv hf hf readme

Quickstart

Clone and install

git clone https://github.com/open-mmlab/Amphion.git
# create env
bash ./models/tts/maskgct/env.sh

Model download

We provide the following pretrained checkpoints:

Model Name Description
Acoustic Codec Converting speech to semantic tokens.
Semantic Codec Converting speech to acoustic tokens and reconstructing waveform from acoustic tokens.
MaskGCT-T2S Predicting semantic tokens with text and prompt semantic tokens.
MaskGCT-S2A Predicts acoustic tokens conditioned on semantic tokens.

You can download all pretrained checkpoints from HuggingFace or use huggingface api.

from huggingface_hub import hf_hub_download

# download semantic codec ckpt
semantic_code_ckpt = hf_hub_download("amphion/MaskGCT" filename="semantic_codec/model.safetensors")

# download acoustic codec ckpt
codec_encoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model.safetensors")
codec_decoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model_1.safetensors")

# download t2s model ckpt
t2s_model_ckpt = hf_hub_download("amphion/MaskGCT", filename="t2s_model/model.safetensors")

# download s2a model ckpt
s2a_1layer_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_1layer/model.safetensors")
s2a_full_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_full/model.safetensors")

Basic Usage

You can use the following code to generate speech from text and a prompt speech.

from models.tts.maskgct.maskgct_utils import *
from huggingface_hub import hf_hub_download
import safetensors
import soundfile as sf

if __name__ == "__main__":

    # build model
    device = torch.device("cuda:0")
    cfg_path = "./models/tts/maskgct/config/maskgct.json"
    cfg = load_config(cfg_path)
    # 1. build semantic model (w2v-bert-2.0)
    semantic_model, semantic_mean, semantic_std = build_semantic_model(device)
    # 2. build semantic codec
    semantic_codec = build_semantic_codec(cfg.model.semantic_codec, device)
    # 3. build acoustic codec
    codec_encoder, codec_decoder = build_acoustic_codec(cfg.model.acoustic_codec, device)
    # 4. build t2s model
    t2s_model = build_t2s_model(cfg.model.t2s_model, device)
    # 5. build s2a model
    s2a_model_1layer = build_s2a_model(cfg.model.s2a_model.s2a_1layer, device)
    s2a_model_full =  build_s2a_model(cfg.model.s2a_model.s2a_full, device)

    # download checkpoint
    ...

    # load semantic codec
    safetensors.torch.load_model(semantic_codec, semantic_code_ckpt)
    # load acoustic codec
    safetensors.torch.load_model(codec_encoder, codec_encoder_ckpt)
    safetensors.torch.load_model(codec_decoder, codec_decoder_ckpt)
    # load t2s model
    safetensors.torch.load_model(t2s_model, t2s_model_ckpt)
    # load s2a model
    safetensors.torch.load_model(s2a_model_1layer, s2a_1layer_ckpt)
    safetensors.torch.load_model(s2a_model_full, s2a_full_ckpt)

    # inference
    prompt_wav_path = "./models/tts/maskgct/wav/prompt.wav"
    save_path = "[YOUR SAVE PATH]"
    prompt_text = " We do not break. We never give in. We never back down."
    target_text = "In this paper, we introduce MaskGCT, a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision."
    # Specify the target duration (in seconds). If target_len = None, we use a simple rule to predict the target duration.
    target_len = 18
    recovered_audio = maskgct_inference(prompt_wav_path, prompt_text, target_text, "en", "en", target_len=target_len)
    sf.write(save_path, recovered_audio, 24000)