swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final_09

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224-in22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2586
  • Accuracy: 0.9077
  • F1 Score: 0.9093
  • Precision: 0.9184
  • Sensitivity: 0.9071
  • Specificity: 0.9766

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 100
  • eval_batch_size: 100
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 400
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Score Precision Sensitivity Specificity
1.4243 0.99 19 1.2818 0.4124 0.3570 0.4910 0.4019 0.8403
1.1046 1.97 38 0.8873 0.6658 0.6584 0.7235 0.6608 0.9117
0.5232 2.96 57 0.5753 0.7671 0.7654 0.8063 0.7631 0.9395
0.3235 4.0 77 0.4476 0.8256 0.8272 0.8496 0.8228 0.9549
0.2586 4.99 96 0.3886 0.8590 0.8608 0.8764 0.8567 0.9638
0.1986 5.97 115 0.3538 0.8641 0.8663 0.8816 0.8624 0.9652
0.166 6.96 134 0.3543 0.8649 0.8668 0.8849 0.8637 0.9655
0.1345 8.0 154 0.3729 0.8586 0.8610 0.8837 0.8571 0.9640
0.1197 8.99 173 0.2879 0.8975 0.8987 0.9098 0.8961 0.9740
0.1033 9.97 192 0.2810 0.8998 0.9013 0.9128 0.8983 0.9746
0.0957 10.96 211 0.3239 0.8802 0.8818 0.8988 0.8795 0.9696
0.085 12.0 231 0.2586 0.9077 0.9093 0.9184 0.9071 0.9766
0.0769 12.99 250 0.2662 0.9018 0.9036 0.9149 0.9011 0.9751
0.0758 13.97 269 0.2830 0.8951 0.8970 0.9102 0.8945 0.9734
0.068 14.96 288 0.2757 0.8967 0.8986 0.9113 0.8960 0.9738
0.0641 16.0 308 0.2743 0.8991 0.9008 0.9136 0.8984 0.9744
0.0623 16.99 327 0.2713 0.8987 0.9001 0.9127 0.8982 0.9743
0.0542 17.97 346 0.2650 0.8987 0.9005 0.9128 0.8980 0.9743
0.0573 18.96 365 0.2709 0.8963 0.8981 0.9112 0.8957 0.9737
0.058 19.74 380 0.2778 0.8947 0.8965 0.9101 0.8942 0.9733

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results