amjadfqs's picture
update model card README.md
b8a0da3
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
model-index:
  - name: swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9396355353075171
          - name: Precision
            type: precision
            value: 0.9408448811333167

swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224-in22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1577
  • Accuracy: 0.9396
  • F1 Score: 0.9385
  • Precision: 0.9408

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Score Precision
1.1562 0.99 41 1.1378 0.6378 0.6191 0.6537
0.4878 1.99 82 0.6477 0.7591 0.7499 0.7874
0.2623 2.98 123 0.4410 0.8337 0.8311 0.8488
0.1985 4.0 165 0.4660 0.8144 0.8115 0.8455
0.1736 4.99 206 0.3230 0.8776 0.8760 0.8894
0.124 5.99 247 0.2684 0.9026 0.9014 0.9090
0.1278 6.98 288 0.2210 0.9180 0.9166 0.9210
0.0959 8.0 330 0.2151 0.9208 0.9195 0.9260
0.0849 8.99 371 0.2154 0.9220 0.9205 0.9291
0.0805 9.99 412 0.2112 0.9191 0.9179 0.9251
0.0682 10.98 453 0.1563 0.9385 0.9369 0.9402
0.0624 12.0 495 0.1577 0.9396 0.9385 0.9408
0.0415 12.99 536 0.1836 0.9305 0.9294 0.9332
0.0465 13.99 577 0.2145 0.9203 0.9192 0.9252
0.056 14.98 618 0.1710 0.9339 0.9325 0.9369
0.0545 16.0 660 0.2094 0.9248 0.9236 0.9298
0.0591 16.99 701 0.1752 0.9317 0.9303 0.9341
0.0512 17.99 742 0.1781 0.9311 0.9297 0.9342
0.0424 18.98 783 0.1873 0.9305 0.9293 0.9338
0.0438 19.88 820 0.1955 0.9265 0.9252 0.9307

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3