|
--- |
|
base_model: meta-llama/Llama-3.2-11B-Vision-Instruct |
|
license: llama3.2 |
|
--- |
|
# Llama-3.2-11B-Vision-Instruct-FP8-KV |
|
- ## Introduction |
|
This model was created by applying [Quark](https://quark.docs.amd.com/latest/index.html) with calibration samples from Pile dataset. |
|
- ## Quantization Stragegy |
|
- ***Quantized Layers***: All linear layers in MllamaForCausalLM excluding "lm_head" |
|
- ***Weight***: FP8 symmetric per-tensor |
|
- ***Activation***: FP8 symmetric per-tensor |
|
- ***KV Cache***: FP8 symmetric per-tensor |
|
- ***Note***: The Llama-3.2-11B-Vision-Instruct consists of two parts: the language model (MllamaForCausalLM) and the vision model (MllamaVisionModel). Here, we only quantize the MllamaForCausalLM. |
|
- ## Quick Start |
|
1. [Download and install Quark](https://quark.docs.amd.com/latest/install.html) |
|
2. Run the quantization script in the example folder using the following command line: |
|
```sh |
|
export MODEL_DIR = [local model checkpoint folder] or meta-llama/Llama-3.2-11B-Vision-Instruct |
|
# single GPU |
|
python3 quantize_quark.py \ |
|
--model_dir $MODEL_DIR \ |
|
--output_dir Llama-3.2-11B-Vision-Instruct-FP8-KV \ |
|
--quant_scheme w_fp8_a_fp8 \ |
|
--kv_cache_dtype fp8 \ |
|
--num_calib_data 128 \ |
|
--model_export quark_safetensors \ |
|
--no_weight_matrix_merge \ |
|
--custom_mode fp8 |
|
# If model size is too large for single GPU, please use multi GPU instead. |
|
python3 quantize_quark.py \ |
|
--model_dir $MODEL_DIR \ |
|
--output_dir Llama-3.2-11B-Vision-Instruct-FP8-KV \ |
|
--quant_scheme w_fp8_a_fp8 \ |
|
--kv_cache_dtype fp8 \ |
|
--num_calib_data 128 \ |
|
--model_export quark_safetensors \ |
|
--no_weight_matrix_merge \ |
|
--multi_gpu \ |
|
--custom_mode fp8 |
|
``` |
|
## Deployment |
|
Quark has its own export format and allows FP8 quantized models to be efficiently deployed using the vLLM backend(vLLM-compatible). |
|
## Evaluation |
|
Quark currently uses perplexity(PPL) as the evaluation metric for accuracy loss before and after quantization.The specific PPL algorithm can be referenced in the quantize_quark.py. |
|
The quantization evaluation results are conducted in pseudo-quantization mode, which may slightly differ from the actual quantized inference accuracy. These results are provided for reference only. |
|
#### Evaluation scores |
|
<table> |
|
<tr> |
|
<td><strong>Benchmark</strong> |
|
</td> |
|
<td><strong>Llama-3.2-11B-Vision-Instruct </strong> |
|
</td> |
|
<td><strong>Llama-3.2-11B-Vision-Instruct-FP8-KV(this model)</strong> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Perplexity-wikitext2 |
|
</td> |
|
<td>7.2285 |
|
</td> |
|
<td>7.2799 |
|
</td> |
|
</tr> |
|
|
|
</table> |
|
|
|
#### License |
|
Modifications copyright(c) 2024 Advanced Micro Devices,Inc. All rights reserved. |
|
|