amazingvince's picture
End of training
ea9a010 verified
|
raw
history blame
2.09 kB
---
license: apache-2.0
base_model: jinaai/jina-embeddings-v2-base-code
tags:
- generated_from_trainer
model-index:
- name: jina_embeddings_v2_base_code_multi_regression-simple
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/amazingvince/huggingface/runs/nakztaik)
# jina_embeddings_v2_base_code_multi_regression-simple
This model is a fine-tuned version of [jinaai/jina-embeddings-v2-base-code](https://huggingface.co/jinaai/jina-embeddings-v2-base-code) on the amazingvince/the-stack-smol-xs-scored-and-annotated-all dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6201
- Mse: 0.6201
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 90085
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-09
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mse |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.7241 | 0.1936 | 100 | 0.6361 | 0.6361 |
| 0.575 | 0.3871 | 200 | 0.6364 | 0.6364 |
| 0.6298 | 0.5807 | 300 | 0.6253 | 0.6253 |
| 0.4298 | 0.7743 | 400 | 0.6117 | 0.6117 |
| 0.5672 | 0.9678 | 500 | 0.6216 | 0.6216 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.1.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1