GPT2QA_wikiqa / README.md
amaanbadure's picture
amaanbadure/GPT2_WikiQA_test
f61e3aa
metadata
license: mit
base_model: gpt2
tags:
  - generated_from_trainer
datasets:
  - wiki_qa
metrics:
  - accuracy
  - f1
model-index:
  - name: GPT2QA_wikiqa
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: wiki_qa
          type: wiki_qa
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9578606158833063
          - name: F1
            type: f1
            value: 0

GPT2QA_wikiqa

This model is a fine-tuned version of gpt2 on the wiki_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2413
  • Accuracy: 0.9579
  • F1: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.1963 1.0 1387 0.2651 0.9579 0.0
0.2095 2.0 2774 0.2413 0.9579 0.0

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1