metadata
license: mit
base_model: gpt2
tags:
- generated_from_trainer
datasets:
- wiki_qa
metrics:
- accuracy
- f1
model-index:
- name: GPT2QA_wikiqa
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: wiki_qa
type: wiki_qa
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9578606158833063
- name: F1
type: f1
value: 0
GPT2QA_wikiqa
This model is a fine-tuned version of gpt2 on the wiki_qa dataset. It achieves the following results on the evaluation set:
- Loss: 0.2413
- Accuracy: 0.9579
- F1: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.1963 | 1.0 | 1387 | 0.2651 | 0.9579 | 0.0 |
0.2095 | 2.0 | 2774 | 0.2413 | 0.9579 | 0.0 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1