alyzbane commited on
Commit
f75fa13
·
verified ·
1 Parent(s): accc487

End of training

Browse files
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google/vit-base-patch16-224
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - imagefolder
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ - accuracy
14
+ model-index:
15
+ - name: vit-base-patch16-224-finetuned-barkley
16
+ results:
17
+ - task:
18
+ name: Image Classification
19
+ type: image-classification
20
+ dataset:
21
+ name: imagefolder
22
+ type: imagefolder
23
+ config: default
24
+ split: train
25
+ args: default
26
+ metrics:
27
+ - name: Precision
28
+ type: precision
29
+ value: 0.9936145510835913
30
+ - name: Recall
31
+ type: recall
32
+ value: 0.993421052631579
33
+ - name: F1
34
+ type: f1
35
+ value: 0.993419541966282
36
+ - name: Accuracy
37
+ type: accuracy
38
+ value: 0.9939393939393939
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # vit-base-patch16-224-finetuned-barkley
45
+
46
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.0340
49
+ - Precision: 0.9936
50
+ - Recall: 0.9934
51
+ - F1: 0.9934
52
+ - Accuracy: 0.9939
53
+ - Top1 Accuracy: 0.9934
54
+ - Error Rate: 0.0061
55
+
56
+ ## Model description
57
+
58
+ More information needed
59
+
60
+ ## Intended uses & limitations
61
+
62
+ More information needed
63
+
64
+ ## Training and evaluation data
65
+
66
+ More information needed
67
+
68
+ ## Training procedure
69
+
70
+ ### Training hyperparameters
71
+
72
+ The following hyperparameters were used during training:
73
+ - learning_rate: 0.0002
74
+ - train_batch_size: 32
75
+ - eval_batch_size: 32
76
+ - seed: 42
77
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
78
+ - lr_scheduler_type: linear
79
+ - lr_scheduler_warmup_ratio: 0.1
80
+ - num_epochs: 30
81
+ - mixed_precision_training: Native AMP
82
+
83
+ ### Training results
84
+
85
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Top1 Accuracy | Error Rate |
86
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:|
87
+ | 1.7463 | 1.0 | 38 | 1.7013 | 0.2143 | 0.2171 | 0.1930 | 0.2186 | 0.2171 | 0.7814 |
88
+ | 1.5581 | 2.0 | 76 | 1.4481 | 0.3512 | 0.3487 | 0.3287 | 0.3682 | 0.3487 | 0.6318 |
89
+ | 1.2665 | 3.0 | 114 | 1.0585 | 0.7397 | 0.7237 | 0.7274 | 0.7294 | 0.7237 | 0.2706 |
90
+ | 0.8572 | 4.0 | 152 | 0.5839 | 0.9467 | 0.9408 | 0.9417 | 0.9449 | 0.9408 | 0.0551 |
91
+ | 0.4337 | 5.0 | 190 | 0.2339 | 0.9820 | 0.9803 | 0.9802 | 0.9818 | 0.9803 | 0.0182 |
92
+ | 0.1569 | 6.0 | 228 | 0.0949 | 0.9739 | 0.9737 | 0.9735 | 0.9756 | 0.9737 | 0.0244 |
93
+ | 0.0577 | 7.0 | 266 | 0.0434 | 0.9872 | 0.9868 | 0.9867 | 0.9879 | 0.9868 | 0.0121 |
94
+ | 0.0172 | 8.0 | 304 | 0.0380 | 0.9870 | 0.9868 | 0.9868 | 0.9877 | 0.9868 | 0.0123 |
95
+ | 0.0208 | 9.0 | 342 | 0.0530 | 0.9876 | 0.9868 | 0.9868 | 0.9879 | 0.9868 | 0.0121 |
96
+ | 0.0071 | 10.0 | 380 | 0.0987 | 0.9716 | 0.9671 | 0.9669 | 0.9697 | 0.9671 | 0.0303 |
97
+ | 0.0062 | 11.0 | 418 | 0.0340 | 0.9936 | 0.9934 | 0.9934 | 0.9939 | 0.9934 | 0.0061 |
98
+ | 0.0165 | 12.0 | 456 | 0.0649 | 0.9809 | 0.9803 | 0.9799 | 0.9818 | 0.9803 | 0.0182 |
99
+ | 0.0057 | 13.0 | 494 | 0.0375 | 0.9936 | 0.9934 | 0.9934 | 0.9939 | 0.9934 | 0.0061 |
100
+ | 0.0038 | 14.0 | 532 | 0.0377 | 0.9936 | 0.9934 | 0.9934 | 0.9939 | 0.9934 | 0.0061 |
101
+
102
+
103
+ ### Framework versions
104
+
105
+ - Transformers 4.45.2
106
+ - Pytorch 2.3.1+cu121
107
+ - Datasets 3.0.1
108
+ - Tokenizers 0.20.1
all_results.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 14.0,
3
+ "eval_accuracy": 0.9939393939393939,
4
+ "eval_error_rate": 0.0060606060606061,
5
+ "eval_f1": 0.993419541966282,
6
+ "eval_loss": 0.03395003080368042,
7
+ "eval_model_preparation_time": 0.008,
8
+ "eval_precision": 0.9936145510835913,
9
+ "eval_recall": 0.993421052631579,
10
+ "eval_runtime": 62.1415,
11
+ "eval_samples_per_second": 2.446,
12
+ "eval_steps_per_second": 0.08,
13
+ "eval_top1_accuracy": 0.993421052631579,
14
+ "total_flos": 1.319259102551212e+18,
15
+ "train_loss": 0.4395476876008779,
16
+ "train_runtime": 10817.4486,
17
+ "train_samples_per_second": 3.372,
18
+ "train_steps_per_second": 0.105
19
+ }
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/vit-base-patch16-224",
3
+ "architectures": [
4
+ "ViTForImageClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "encoder_stride": 16,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.0,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "Iinstia bijuga",
13
+ "1": "Mangifera indica",
14
+ "2": "Pterocarpus indicus",
15
+ "3": "Roystonea regia",
16
+ "4": "Tabebuia"
17
+ },
18
+ "image_size": 224,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 3072,
21
+ "label2id": {
22
+ "Iinstia bijuga": 0,
23
+ "Mangifera indica": 1,
24
+ "Pterocarpus indicus": 2,
25
+ "Roystonea regia": 3,
26
+ "Tabebuia": 4
27
+ },
28
+ "layer_norm_eps": 1e-12,
29
+ "model_type": "vit",
30
+ "num_attention_heads": 12,
31
+ "num_channels": 3,
32
+ "num_hidden_layers": 12,
33
+ "patch_size": 16,
34
+ "problem_type": "single_label_classification",
35
+ "qkv_bias": true,
36
+ "torch_dtype": "float32",
37
+ "transformers_version": "4.45.2"
38
+ }
eval_results.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 14.0,
3
+ "eval_accuracy": 0.9939393939393939,
4
+ "eval_error_rate": 0.0060606060606061,
5
+ "eval_f1": 0.993419541966282,
6
+ "eval_loss": 0.03395003080368042,
7
+ "eval_precision": 0.9936145510835913,
8
+ "eval_recall": 0.993421052631579,
9
+ "eval_runtime": 62.1415,
10
+ "eval_samples_per_second": 2.446,
11
+ "eval_steps_per_second": 0.08,
12
+ "eval_top1_accuracy": 0.993421052631579
13
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d8b7d00aba59d6176b6560b26fd8fafe32180a89f3d001465ff90a2d2a48ba0
3
+ size 343233204
preprocessor_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_rescale": true,
4
+ "do_resize": true,
5
+ "image_mean": [
6
+ 0.5,
7
+ 0.5,
8
+ 0.5
9
+ ],
10
+ "image_processor_type": "ViTImageProcessorFast",
11
+ "image_std": [
12
+ 0.5,
13
+ 0.5,
14
+ 0.5
15
+ ],
16
+ "resample": 2,
17
+ "rescale_factor": 0.00392156862745098,
18
+ "size": {
19
+ "height": 224,
20
+ "width": 224
21
+ }
22
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 14.0,
3
+ "total_flos": 1.319259102551212e+18,
4
+ "train_loss": 0.4395476876008779,
5
+ "train_runtime": 10817.4486,
6
+ "train_samples_per_second": 3.372,
7
+ "train_steps_per_second": 0.105
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,401 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.03395003080368042,
3
+ "best_model_checkpoint": "vit-base-patch16-224-finetuned-barkley\\checkpoint-418",
4
+ "epoch": 14.0,
5
+ "eval_steps": 500,
6
+ "global_step": 532,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "train_accuracy": 0.21134868421052633
14
+ },
15
+ {
16
+ "epoch": 1.0,
17
+ "grad_norm": 7.52012300491333,
18
+ "learning_rate": 1.1659108139509125e-06,
19
+ "loss": 1.7463,
20
+ "step": 38
21
+ },
22
+ {
23
+ "epoch": 1.0,
24
+ "eval_accuracy": 0.21856060606060607,
25
+ "eval_error_rate": 0.781439393939394,
26
+ "eval_f1": 0.19295495348680888,
27
+ "eval_loss": 1.701319694519043,
28
+ "eval_precision": 0.2142622862160236,
29
+ "eval_recall": 0.21710526315789475,
30
+ "eval_runtime": 46.6936,
31
+ "eval_samples_per_second": 3.255,
32
+ "eval_steps_per_second": 0.107,
33
+ "eval_top1_accuracy": 0.21710526315789475,
34
+ "step": 38
35
+ },
36
+ {
37
+ "epoch": 2.0,
38
+ "train_accuracy": 0.30409356725146197
39
+ },
40
+ {
41
+ "epoch": 2.0,
42
+ "grad_norm": 6.449554920196533,
43
+ "learning_rate": 2.23574935501902e-06,
44
+ "loss": 1.5581,
45
+ "step": 76
46
+ },
47
+ {
48
+ "epoch": 2.0,
49
+ "eval_accuracy": 0.36818181818181817,
50
+ "eval_error_rate": 0.6318181818181818,
51
+ "eval_f1": 0.328691576484973,
52
+ "eval_loss": 1.4481072425842285,
53
+ "eval_precision": 0.3511731503217571,
54
+ "eval_recall": 0.34868421052631576,
55
+ "eval_runtime": 63.7667,
56
+ "eval_samples_per_second": 2.384,
57
+ "eval_steps_per_second": 0.078,
58
+ "eval_top1_accuracy": 0.34868421052631576,
59
+ "step": 76
60
+ },
61
+ {
62
+ "epoch": 3.0,
63
+ "train_accuracy": 0.5197368421052632
64
+ },
65
+ {
66
+ "epoch": 3.0,
67
+ "grad_norm": 5.767495155334473,
68
+ "learning_rate": 3.927960312504679e-06,
69
+ "loss": 1.2665,
70
+ "step": 114
71
+ },
72
+ {
73
+ "epoch": 3.0,
74
+ "eval_accuracy": 0.7293560606060607,
75
+ "eval_error_rate": 0.27064393939393927,
76
+ "eval_f1": 0.7273905235235443,
77
+ "eval_loss": 1.0585086345672607,
78
+ "eval_precision": 0.7397410035407469,
79
+ "eval_recall": 0.7236842105263158,
80
+ "eval_runtime": 47.8118,
81
+ "eval_samples_per_second": 3.179,
82
+ "eval_steps_per_second": 0.105,
83
+ "eval_top1_accuracy": 0.7236842105263158,
84
+ "step": 114
85
+ },
86
+ {
87
+ "epoch": 4.0,
88
+ "train_accuracy": 0.8062865497076024
89
+ },
90
+ {
91
+ "epoch": 4.0,
92
+ "grad_norm": 12.979792594909668,
93
+ "learning_rate": 6.113544042901594e-06,
94
+ "loss": 0.8572,
95
+ "step": 152
96
+ },
97
+ {
98
+ "epoch": 4.0,
99
+ "eval_accuracy": 0.9448863636363637,
100
+ "eval_error_rate": 0.05511363636363631,
101
+ "eval_f1": 0.9416857901577765,
102
+ "eval_loss": 0.58392333984375,
103
+ "eval_precision": 0.9467451523545707,
104
+ "eval_recall": 0.9407894736842105,
105
+ "eval_runtime": 46.5589,
106
+ "eval_samples_per_second": 3.265,
107
+ "eval_steps_per_second": 0.107,
108
+ "eval_top1_accuracy": 0.9407894736842105,
109
+ "step": 152
110
+ },
111
+ {
112
+ "epoch": 5.0,
113
+ "train_accuracy": 0.9466374269005848
114
+ },
115
+ {
116
+ "epoch": 5.0,
117
+ "grad_norm": 4.086988925933838,
118
+ "learning_rate": 8.62589039584572e-06,
119
+ "loss": 0.4337,
120
+ "step": 190
121
+ },
122
+ {
123
+ "epoch": 5.0,
124
+ "eval_accuracy": 0.9818181818181818,
125
+ "eval_error_rate": 0.018181818181818188,
126
+ "eval_f1": 0.9802351026820783,
127
+ "eval_loss": 0.23391342163085938,
128
+ "eval_precision": 0.9819548872180451,
129
+ "eval_recall": 0.9802631578947368,
130
+ "eval_runtime": 48.9157,
131
+ "eval_samples_per_second": 3.107,
132
+ "eval_steps_per_second": 0.102,
133
+ "eval_top1_accuracy": 0.9802631578947368,
134
+ "step": 190
135
+ },
136
+ {
137
+ "epoch": 6.0,
138
+ "train_accuracy": 0.9846491228070176
139
+ },
140
+ {
141
+ "epoch": 6.0,
142
+ "grad_norm": 1.9588254690170288,
143
+ "learning_rate": 1.1273479642392808e-05,
144
+ "loss": 0.1569,
145
+ "step": 228
146
+ },
147
+ {
148
+ "epoch": 6.0,
149
+ "eval_accuracy": 0.9755681818181818,
150
+ "eval_error_rate": 0.024431818181818166,
151
+ "eval_f1": 0.9734739448002901,
152
+ "eval_loss": 0.09490276873111725,
153
+ "eval_precision": 0.9738519848439453,
154
+ "eval_recall": 0.9736842105263158,
155
+ "eval_runtime": 62.9862,
156
+ "eval_samples_per_second": 2.413,
157
+ "eval_steps_per_second": 0.079,
158
+ "eval_top1_accuracy": 0.9736842105263158,
159
+ "step": 228
160
+ },
161
+ {
162
+ "epoch": 7.0,
163
+ "train_accuracy": 0.9890350877192983
164
+ },
165
+ {
166
+ "epoch": 7.0,
167
+ "grad_norm": 4.820840835571289,
168
+ "learning_rate": 1.3854482295832083e-05,
169
+ "loss": 0.0577,
170
+ "step": 266
171
+ },
172
+ {
173
+ "epoch": 7.0,
174
+ "eval_accuracy": 0.9878787878787879,
175
+ "eval_error_rate": 0.012121212121212088,
176
+ "eval_f1": 0.9867362170674966,
177
+ "eval_loss": 0.04335561394691467,
178
+ "eval_precision": 0.9872349657566376,
179
+ "eval_recall": 0.9868421052631579,
180
+ "eval_runtime": 60.8368,
181
+ "eval_samples_per_second": 2.498,
182
+ "eval_steps_per_second": 0.082,
183
+ "eval_top1_accuracy": 0.9868421052631579,
184
+ "step": 266
185
+ },
186
+ {
187
+ "epoch": 8.0,
188
+ "train_accuracy": 0.9978070175438597
189
+ },
190
+ {
191
+ "epoch": 8.0,
192
+ "grad_norm": 0.17172254621982574,
193
+ "learning_rate": 1.6172144859969913e-05,
194
+ "loss": 0.0172,
195
+ "step": 304
196
+ },
197
+ {
198
+ "epoch": 8.0,
199
+ "eval_accuracy": 0.9876893939393939,
200
+ "eval_error_rate": 0.012310606060606077,
201
+ "eval_f1": 0.9868389880173071,
202
+ "eval_loss": 0.038041990250349045,
203
+ "eval_precision": 0.9870356037151703,
204
+ "eval_recall": 0.9868421052631579,
205
+ "eval_runtime": 52.1078,
206
+ "eval_samples_per_second": 2.917,
207
+ "eval_steps_per_second": 0.096,
208
+ "eval_top1_accuracy": 0.9868421052631579,
209
+ "step": 304
210
+ },
211
+ {
212
+ "epoch": 9.0,
213
+ "train_accuracy": 0.993421052631579
214
+ },
215
+ {
216
+ "epoch": 9.0,
217
+ "grad_norm": 0.35163307189941406,
218
+ "learning_rate": 1.8049788627450628e-05,
219
+ "loss": 0.0208,
220
+ "step": 342
221
+ },
222
+ {
223
+ "epoch": 9.0,
224
+ "eval_accuracy": 0.9878787878787879,
225
+ "eval_error_rate": 0.012121212121212088,
226
+ "eval_f1": 0.986835875199362,
227
+ "eval_loss": 0.05302947387099266,
228
+ "eval_precision": 0.9876160990712075,
229
+ "eval_recall": 0.9868421052631579,
230
+ "eval_runtime": 62.895,
231
+ "eval_samples_per_second": 2.417,
232
+ "eval_steps_per_second": 0.079,
233
+ "eval_top1_accuracy": 0.9868421052631579,
234
+ "step": 342
235
+ },
236
+ {
237
+ "epoch": 10.0,
238
+ "train_accuracy": 0.9985380116959064
239
+ },
240
+ {
241
+ "epoch": 10.0,
242
+ "grad_norm": 0.4090166985988617,
243
+ "learning_rate": 1.9344278148426573e-05,
244
+ "loss": 0.0071,
245
+ "step": 380
246
+ },
247
+ {
248
+ "epoch": 10.0,
249
+ "eval_accuracy": 0.9696969696969697,
250
+ "eval_error_rate": 0.030303030303030276,
251
+ "eval_f1": 0.9669489564967301,
252
+ "eval_loss": 0.09868758916854858,
253
+ "eval_precision": 0.9715504978662873,
254
+ "eval_recall": 0.9671052631578947,
255
+ "eval_runtime": 62.4085,
256
+ "eval_samples_per_second": 2.436,
257
+ "eval_steps_per_second": 0.08,
258
+ "eval_top1_accuracy": 0.9671052631578947,
259
+ "step": 380
260
+ },
261
+ {
262
+ "epoch": 11.0,
263
+ "train_accuracy": 0.9948830409356725
264
+ },
265
+ {
266
+ "epoch": 11.0,
267
+ "grad_norm": 0.16305039823055267,
268
+ "learning_rate": 1.995693264909124e-05,
269
+ "loss": 0.0062,
270
+ "step": 418
271
+ },
272
+ {
273
+ "epoch": 11.0,
274
+ "eval_accuracy": 0.9939393939393939,
275
+ "eval_error_rate": 0.0060606060606061,
276
+ "eval_f1": 0.993419541966282,
277
+ "eval_loss": 0.03395003080368042,
278
+ "eval_precision": 0.9936145510835913,
279
+ "eval_recall": 0.993421052631579,
280
+ "eval_runtime": 47.4116,
281
+ "eval_samples_per_second": 3.206,
282
+ "eval_steps_per_second": 0.105,
283
+ "eval_top1_accuracy": 0.993421052631579,
284
+ "step": 418
285
+ },
286
+ {
287
+ "epoch": 12.0,
288
+ "train_accuracy": 0.993421052631579
289
+ },
290
+ {
291
+ "epoch": 12.0,
292
+ "grad_norm": 3.5277631282806396,
293
+ "learning_rate": 1.9969660582486496e-05,
294
+ "loss": 0.0165,
295
+ "step": 456
296
+ },
297
+ {
298
+ "epoch": 12.0,
299
+ "eval_accuracy": 0.9818181818181818,
300
+ "eval_error_rate": 0.018181818181818188,
301
+ "eval_f1": 0.979943544279758,
302
+ "eval_loss": 0.06494485586881638,
303
+ "eval_precision": 0.9808553804296839,
304
+ "eval_recall": 0.9802631578947368,
305
+ "eval_runtime": 56.3797,
306
+ "eval_samples_per_second": 2.696,
307
+ "eval_steps_per_second": 0.089,
308
+ "eval_top1_accuracy": 0.9802631578947368,
309
+ "step": 456
310
+ },
311
+ {
312
+ "epoch": 13.0,
313
+ "train_accuracy": 0.9956140350877193
314
+ },
315
+ {
316
+ "epoch": 13.0,
317
+ "grad_norm": 0.053868379443883896,
318
+ "learning_rate": 1.980785357262109e-05,
319
+ "loss": 0.0057,
320
+ "step": 494
321
+ },
322
+ {
323
+ "epoch": 13.0,
324
+ "eval_accuracy": 0.9939393939393939,
325
+ "eval_error_rate": 0.0060606060606061,
326
+ "eval_f1": 0.993419541966282,
327
+ "eval_loss": 0.03750297427177429,
328
+ "eval_precision": 0.9936145510835913,
329
+ "eval_recall": 0.993421052631579,
330
+ "eval_runtime": 61.2882,
331
+ "eval_samples_per_second": 2.48,
332
+ "eval_steps_per_second": 0.082,
333
+ "eval_top1_accuracy": 0.993421052631579,
334
+ "step": 494
335
+ },
336
+ {
337
+ "epoch": 14.0,
338
+ "train_accuracy": 0.9985380116959064
339
+ },
340
+ {
341
+ "epoch": 14.0,
342
+ "grad_norm": 0.02169680781662464,
343
+ "learning_rate": 1.950863907947058e-05,
344
+ "loss": 0.0038,
345
+ "step": 532
346
+ },
347
+ {
348
+ "epoch": 14.0,
349
+ "eval_accuracy": 0.9939393939393939,
350
+ "eval_error_rate": 0.0060606060606061,
351
+ "eval_f1": 0.993419541966282,
352
+ "eval_loss": 0.037650275975465775,
353
+ "eval_precision": 0.9936145510835913,
354
+ "eval_recall": 0.993421052631579,
355
+ "eval_runtime": 64.509,
356
+ "eval_samples_per_second": 2.356,
357
+ "eval_steps_per_second": 0.078,
358
+ "eval_top1_accuracy": 0.993421052631579,
359
+ "step": 532
360
+ },
361
+ {
362
+ "epoch": 14.0,
363
+ "step": 532,
364
+ "total_flos": 1.319259102551212e+18,
365
+ "train_loss": 0.4395476876008779,
366
+ "train_runtime": 10817.4486,
367
+ "train_samples_per_second": 3.372,
368
+ "train_steps_per_second": 0.105
369
+ }
370
+ ],
371
+ "logging_steps": 500,
372
+ "max_steps": 1140,
373
+ "num_input_tokens_seen": 0,
374
+ "num_train_epochs": 30,
375
+ "save_steps": 500,
376
+ "stateful_callbacks": {
377
+ "EarlyStoppingCallback": {
378
+ "args": {
379
+ "early_stopping_patience": 3,
380
+ "early_stopping_threshold": 0.0
381
+ },
382
+ "attributes": {
383
+ "early_stopping_patience_counter": 3
384
+ }
385
+ },
386
+ "TrainerControl": {
387
+ "args": {
388
+ "should_epoch_stop": false,
389
+ "should_evaluate": false,
390
+ "should_log": false,
391
+ "should_save": true,
392
+ "should_training_stop": true
393
+ },
394
+ "attributes": {}
395
+ }
396
+ },
397
+ "total_flos": 1.319259102551212e+18,
398
+ "train_batch_size": 32,
399
+ "trial_name": null,
400
+ "trial_params": null
401
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eb43bcfd2e0e3cbc7cac889051ecb5a72ca97601937778cbe86b8e6db9d07d1
3
+ size 5176