vit-base-patch16-224-finetuned-barkley

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0036
  • Precision: 1.0
  • Recall: 1.0
  • F1: 1.0
  • Accuracy: 1.0
  • Top1 Accuracy: 1.0
  • Error Rate: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Top1 Accuracy Error Rate
1.6093 1.0 38 1.4340 0.4769 0.4342 0.4066 0.4149 0.4342 0.5851
1.2908 2.0 76 1.1747 0.6587 0.6118 0.6160 0.6161 0.6118 0.3839
1.0409 3.0 114 0.9174 0.7382 0.7303 0.7293 0.7425 0.7303 0.2575
0.781 4.0 152 0.6528 0.8632 0.8618 0.8622 0.8650 0.8618 0.1350
0.5429 5.0 190 0.4112 0.9417 0.9408 0.9405 0.9443 0.9408 0.0557
0.328 6.0 228 0.2229 0.9809 0.9803 0.9802 0.9811 0.9803 0.0189
0.1837 7.0 266 0.1181 0.9871 0.9868 0.9868 0.9878 0.9868 0.0122
0.1131 8.0 304 0.0680 0.9937 0.9934 0.9934 0.9944 0.9934 0.0056
0.0526 9.0 342 0.0387 0.9937 0.9934 0.9934 0.9944 0.9934 0.0056
0.0283 10.0 380 0.0328 0.9873 0.9868 0.9869 0.9878 0.9868 0.0122
0.019 11.0 418 0.0224 0.9873 0.9868 0.9868 0.9889 0.9868 0.0111
0.0148 12.0 456 0.0201 0.9873 0.9868 0.9868 0.9889 0.9868 0.0111
0.0095 13.0 494 0.0396 0.9871 0.9868 0.9868 0.9878 0.9868 0.0122
0.007 14.0 532 0.0048 1.0 1.0 1.0 1.0 1.0 0.0
0.011 15.0 570 0.0036 1.0 1.0 1.0 1.0 1.0 0.0
0.0071 16.0 608 0.0092 0.9936 0.9934 0.9934 0.9941 0.9934 0.0059
0.0103 17.0 646 0.0148 0.9936 0.9934 0.9934 0.9944 0.9934 0.0056

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for alyzbane/vit-base-patch16-224-finetuned-barkley

Finetuned
(541)
this model