2025-01-21-15-57-43-swin-base-patch4-window7-224

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0384
  • Precision: 0.9928
  • Recall: 0.9926
  • F1: 0.9926
  • Accuracy: 0.992
  • Top1 Accuracy: 0.9926
  • Error Rate: 0.0080

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 3407
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Top1 Accuracy Error Rate
0.732 1.0 34 0.3980 0.9165 0.8741 0.8590 0.8649 0.8741 0.1351
0.2462 2.0 68 0.1051 0.9538 0.9481 0.9484 0.9499 0.9481 0.0501
0.1991 3.0 102 0.0384 0.9928 0.9926 0.9926 0.992 0.9926 0.0080
0.1559 4.0 136 0.0890 0.9802 0.9778 0.9780 0.9777 0.9778 0.0223
0.1024 5.0 170 0.1092 0.9863 0.9852 0.9852 0.9846 0.9852 0.0154

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
33
Safetensors
Model size
86.8M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for alyzbane/2025-01-21-15-57-43-swin-base-patch4-window7-224

Finetuned
(57)
this model