|
--- |
|
license: apache-2.0 |
|
base_model: google/bigbird-pegasus-large-arxiv |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bigbird_pegasus |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bigbird_pegasus |
|
|
|
This model is a fine-tuned version of [google/bigbird-pegasus-large-arxiv](https://huggingface.co/google/bigbird-pegasus-large-arxiv) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: nan |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: polynomial |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 20000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 0.0 | 0.0 | 500 | nan | |
|
| 0.0 | 0.01 | 1000 | nan | |
|
| 0.0 | 0.01 | 1500 | nan | |
|
| 0.0 | 0.01 | 2000 | nan | |
|
| 0.0 | 0.02 | 2500 | nan | |
|
| 0.0 | 0.02 | 3000 | nan | |
|
| 0.0 | 0.02 | 3500 | nan | |
|
| 0.0 | 0.03 | 4000 | nan | |
|
| 0.0 | 0.03 | 4500 | nan | |
|
| 0.0 | 0.03 | 5000 | nan | |
|
| 0.0 | 0.04 | 5500 | nan | |
|
| 0.0 | 0.04 | 6000 | nan | |
|
| 0.0 | 0.05 | 6500 | nan | |
|
| 0.0 | 0.05 | 7000 | nan | |
|
| 0.0 | 0.05 | 7500 | nan | |
|
| 0.0 | 0.06 | 8000 | nan | |
|
| 0.0 | 0.06 | 8500 | nan | |
|
| 0.0 | 0.06 | 9000 | nan | |
|
| 0.0 | 0.07 | 9500 | nan | |
|
| 0.0 | 0.07 | 10000 | nan | |
|
| 0.0 | 0.07 | 10500 | nan | |
|
| 0.0 | 0.08 | 11000 | nan | |
|
| 0.0 | 0.08 | 11500 | nan | |
|
| 0.0 | 0.08 | 12000 | nan | |
|
| 0.0 | 0.09 | 12500 | nan | |
|
| 0.0 | 0.09 | 13000 | nan | |
|
| 0.0 | 0.09 | 13500 | nan | |
|
| 0.0 | 0.1 | 14000 | nan | |
|
| 0.0 | 0.1 | 14500 | nan | |
|
| 0.0 | 0.1 | 15000 | nan | |
|
| 0.0 | 0.11 | 15500 | nan | |
|
| 0.0 | 0.11 | 16000 | nan | |
|
| 0.0 | 0.11 | 16500 | nan | |
|
| 0.0 | 0.12 | 17000 | nan | |
|
| 0.0 | 0.12 | 17500 | nan | |
|
| 0.0 | 0.13 | 18000 | nan | |
|
| 0.0 | 0.13 | 18500 | nan | |
|
| 0.0 | 0.13 | 19000 | nan | |
|
| 0.0 | 0.14 | 19500 | nan | |
|
| 0.0 | 0.14 | 20000 | nan | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.1 |
|
|