ner_tag_model

This model is a fine-tuned version of Gladiator/microsoft-deberta-v3-large_ner_conll2003 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1712
  • Precision: 0.8569
  • Recall: 0.8551
  • F1: 0.8560
  • Accuracy: 0.9151

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2322 1.0 2495 0.1925 0.7990 0.7924 0.7957 0.8969
0.1674 2.0 4990 0.1488 0.8218 0.8316 0.8267 0.9116
0.1381 3.0 7485 0.1438 0.8204 0.8350 0.8276 0.9130
0.1284 4.0 9980 0.1381 0.8419 0.8405 0.8412 0.9148
0.1198 5.0 12475 0.1400 0.8280 0.8410 0.8345 0.9148
0.1155 6.0 14970 0.1395 0.8379 0.8467 0.8423 0.9154
0.1125 7.0 17465 0.1496 0.8438 0.8487 0.8462 0.9151
0.1068 8.0 19960 0.1510 0.8518 0.8529 0.8523 0.9156
0.1002 9.0 22455 0.1616 0.8536 0.8539 0.8537 0.9150
0.0964 10.0 24950 0.1712 0.8569 0.8551 0.8560 0.9151

Framework versions

  • Transformers 4.33.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for almaghrabima/ner_tag_model

Finetuned
(2)
this model