almaghrabima's picture
Update README.md
48c6b4e
metadata
license: mit
base_model: dslim/bert-base-NER
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ner_column_bert-base-NER
    results: []
language:
  - en
widget:
  - >-
    india 0S0308Z8   trudeau 3000 Ravensburger Hamnoy, Lofoten of gold
    bestseller 620463000001
  - >-
    other china lc waikiki mağazacilik hi̇zmetleri̇ ti̇c aş 630140000000 hilti
    6204699090_BD 55L Toaster Oven with Double Glass
  - >-
    611020000001 italy Apparel  other games 9W1964Z8 debenhams guangzhou hec
    fashion leather co ltd

ner_column_bert-base-NER

This model is a fine-tuned version of dslim/bert-base-NER on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1855
  • Precision: 0.7651
  • Recall: 0.7786
  • F1: 0.7718
  • Accuracy: 0.9026

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 702 0.7382 0.2576 0.1887 0.2178 0.7127
0.9356 2.0 1404 0.4405 0.5139 0.4331 0.4700 0.8157
0.5445 3.0 2106 0.3608 0.5712 0.5143 0.5413 0.8404
0.5445 4.0 2808 0.3226 0.6188 0.5840 0.6009 0.8550
0.4316 5.0 3510 0.2757 0.6788 0.6569 0.6676 0.8728
0.3605 6.0 4212 0.2828 0.6584 0.6346 0.6463 0.8697
0.3605 7.0 4914 0.2456 0.7108 0.6926 0.7015 0.8820
0.3153 8.0 5616 0.2385 0.7055 0.6986 0.7021 0.8855
0.282 9.0 6318 0.2345 0.7044 0.6961 0.7002 0.8853
0.2587 10.0 7020 0.2313 0.7081 0.7049 0.7065 0.8862
0.2587 11.0 7722 0.2026 0.7734 0.7537 0.7634 0.8968
0.239 12.0 8424 0.1980 0.7651 0.7687 0.7669 0.8991
0.2241 13.0 9126 0.2091 0.7368 0.7423 0.7395 0.8936
0.2241 14.0 9828 0.1954 0.7693 0.7684 0.7689 0.8987
0.2124 15.0 10530 0.1916 0.7668 0.7749 0.7708 0.9008
0.2025 16.0 11232 0.1841 0.7699 0.7794 0.7746 0.9024
0.2025 17.0 11934 0.1938 0.7527 0.7626 0.7576 0.8992
0.193 18.0 12636 0.1849 0.7705 0.7841 0.7772 0.9040
0.1877 19.0 13338 0.1927 0.7510 0.7649 0.7579 0.9005
0.1821 20.0 14040 0.1855 0.7651 0.7786 0.7718 0.9026

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3