metadata
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ner_column_TQ
results: []
language:
- en
widget:
- >-
india 0S0308Z8 trudeau 3000 Ravensburger Hamnoy, Lofoten of gold
bestseller 620463000001
- >-
other china lc waikiki mağazacilik hi̇zmetleri̇ ti̇c aş 630140000000 hilti
6204699090_BD 55L Toaster Oven with Double Glass
- >-
611020000001 italy Apparel other games 9W1964Z8 debenhams guangzhou hec
fashion leather co ltd
ner_column_TQ
This model is a fine-tuned version of Gladiator/microsoft-deberta-v3-large_ner_conll2003 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2111
- Precision: 0.8593
- Recall: 0.8587
- F1: 0.8590
- Accuracy: 0.9163
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 702 | 0.1938 | 0.7778 | 0.7851 | 0.7815 | 0.8957 |
0.3587 | 2.0 | 1404 | 0.1562 | 0.8216 | 0.8219 | 0.8217 | 0.9098 |
0.1645 | 3.0 | 2106 | 0.1472 | 0.8161 | 0.8268 | 0.8214 | 0.9114 |
0.1645 | 4.0 | 2808 | 0.1528 | 0.8357 | 0.8195 | 0.8275 | 0.9097 |
0.1372 | 5.0 | 3510 | 0.1411 | 0.8301 | 0.8349 | 0.8325 | 0.9141 |
0.1259 | 6.0 | 4212 | 0.1396 | 0.8341 | 0.8431 | 0.8386 | 0.9149 |
0.1259 | 7.0 | 4914 | 0.1470 | 0.8178 | 0.8323 | 0.8250 | 0.9126 |
0.1205 | 8.0 | 5616 | 0.1413 | 0.8421 | 0.8480 | 0.8451 | 0.9156 |
0.1152 | 9.0 | 6318 | 0.1417 | 0.8342 | 0.8481 | 0.8411 | 0.9158 |
0.1126 | 10.0 | 7020 | 0.1475 | 0.8427 | 0.8493 | 0.8460 | 0.9154 |
0.1126 | 11.0 | 7722 | 0.1490 | 0.8477 | 0.8510 | 0.8493 | 0.9155 |
0.108 | 12.0 | 8424 | 0.1535 | 0.8511 | 0.8540 | 0.8526 | 0.9160 |
0.1035 | 13.0 | 9126 | 0.1569 | 0.8515 | 0.8552 | 0.8533 | 0.9160 |
0.1035 | 14.0 | 9828 | 0.1677 | 0.8530 | 0.8537 | 0.8534 | 0.9158 |
0.097 | 15.0 | 10530 | 0.1721 | 0.8549 | 0.8557 | 0.8553 | 0.9159 |
0.0912 | 16.0 | 11232 | 0.1822 | 0.8573 | 0.8574 | 0.8573 | 0.9165 |
0.0912 | 17.0 | 11934 | 0.1969 | 0.8577 | 0.8578 | 0.8577 | 0.9158 |
0.0854 | 18.0 | 12636 | 0.1969 | 0.8597 | 0.8587 | 0.8592 | 0.9165 |
0.08 | 19.0 | 13338 | 0.2035 | 0.8587 | 0.8587 | 0.8587 | 0.9165 |
0.0768 | 20.0 | 14040 | 0.2111 | 0.8593 | 0.8587 | 0.8590 | 0.9163 |
Framework versions
- Transformers 4.30.2
- Pytorch 1.13.1+cu116
- Datasets 2.13.2
- Tokenizers 0.13.3