Tailor

Model description

This is a ported version of Tailor, the general-purpose counterfactual generator. For more code release, please refer to this github page.

How to use

from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM

model_path = "allenai/tailor"
generator = pipeline("text2text-generation", 
    model=AutoModelForSeq2SeqLM.from_pretrained(model_path), 
    tokenizer=AutoTokenizer.from_pretrained(model_path),
    framework="pt", device=0)

prompt_text = "[VERB+active+past: comfort | AGENT+complete: the doctor | PATIENT+partial: athlete | LOCATIVE+partial: in] <extra_id_0> , <extra_id_1> <extra_id_2> <extra_id_3> ."
generator(prompt_text, max_length=200)

BibTeX entry and citation info

@misc{ross2021tailor,
      title={Tailor: Generating and Perturbing Text with Semantic Controls}, 
      author={Alexis Ross and Tongshuang Wu and Hao Peng and Matthew E. Peters and Matt Gardner},
      year={2021},
      eprint={2107.07150},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2107.07150},
}
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using allenai/tailor 2