|
--- |
|
model-index: |
|
- name: llama-3-tulu-v2.5-8b-uf-mean-70b-uf-rm-mixed-prompts |
|
results: [] |
|
datasets: |
|
- allenai/tulu-2.5-preference-data |
|
- allenai/tulu-v2-sft-mixture |
|
language: |
|
- en |
|
base_model: allenai/llama-3-tulu-2-8b |
|
license: apache-2.0 |
|
--- |
|
<center> |
|
<img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-2.5/tulu_25_banner.png" alt="Tulu 2.5 banner image" width="800px"/> |
|
</center> |
|
|
|
# Model Card for Llama 3 Tulu V2.5 PPO 13B - UltraFeedback Mean w. 70B UltraFeedback RM and mixed prompts |
|
|
|
Tulu is a series of language models that are trained to act as helpful assistants. |
|
Tulu V2.5 is a series of models trained using DPO and PPO starting from the [Tulu 2 suite](https://huggingface.co/collections/allenai/tulu-v2-suite-6551b56e743e6349aab45101). |
|
This model is trained on the UltraFeedback dataset (using the per-aspect/fine-grained scores for deciding chosen and rejected) using PPO. |
|
We used a 8B RM trained on the UltraFeedback dataset, and then used the UltraFeedback prompts during PPO training. |
|
|
|
This is part of a small update to the original V2.5 suite, adding some Llama 3-based models. We add three models: |
|
- [allenai/llama-3-tulu-v2.5-8b-uf-mean-8b-uf-rm](https://huggingface.co/allenai/tulu-v2.5-llama3-8b-uf-mean-8b-uf-rm) |
|
- [allenai/llama-3-tulu-v2.5-llama3-8b-uf-mean-70b-uf-rm-mixed-prompts](https://huggingface.co/allenai/tulu-v2.5-llama3-8b-uf-mean-70b-uf-rm-mixed-prompts) (this model) |
|
- [allenai/llama-3-tulu-v2.5-llama3-8b-uf-mean-70b-uf-rm](https://huggingface.co/allenai/tulu-v2.5-llama3-8b-uf-mean-70b-uf-rm-mixed-prompts) (best overall model) |
|
|
|
For more details, read the paper: |
|
[Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback](https://arxiv.org/abs/2406.09279). |
|
|
|
Built with Meta Llama 3! Note that Llama 3 is released under the Meta Llama 3 community license, included here under llama_3_license.txt. |
|
|
|
## .Model description |
|
|
|
- **Model type:** One model belonging to a suite of RLHF tuned chat models on a mix of publicly available, synthetic and human-created datasets. |
|
- **Language(s) (NLP):** English |
|
- **License:** Apache 2.0. |
|
- **Finetuned from model:** [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) |
|
|
|
### Model Sources |
|
|
|
- **Repository:** https://github.com/allenai/open-instruct |
|
- **Dataset:** Data used to train this model can be found [here](https://huggingface.co/datasets/allenai/tulu-2.5-preference-data) - specifically the `ultrafeedback_code_math_prompts` split. Only the prompts were used. |
|
- **Model Family:** The collection of related models can be found [here](https://huggingface.co/collections/allenai/tulu-v25-suite-66676520fd578080e126f618). |
|
- **Reward Model:** The reward model used during PPO training can be found [here](https://huggingface.co/allenai/llama-3-tulu-2-8b-uf-mean-rm), and the data used to train it [here](https://huggingface.co/datasets/allenai/tulu-2.5-preference-data) - specifically the `ultrafeedback_mean_aspects` split. |
|
|
|
## Results |
|
|
|
This is a model trained on Llama 3 as an update to the Tulu v2.5 suite. |
|
For details on training and evaluation, read [our paper](https://arxiv.org/abs/2406.09279)! |
|
|
|
|
|
| Model | Size | Alignment | GSM8k 8-shot CoT Acc. | AlpacaEval 2 Winrate (LC) | |
|
|-|-|-|-|-| |
|
| **Tulu V2.5 PPO Llama 3 70B mixed prompts (this model)** | 8B | PPO with 8B RM | 48.5 | **27.5** | |
|
| **Tulu V2.5 PPO 13B** | 13B | PPO with 70B RM | 58.0 | 26.7 | |
|
| **Tulu V2 DPO 13B** | 13B | DPO | 50.5 | 16.0 | |
|
| **Tulu V2 SFT 13B** | 13B | - | 46.0 | 10.4 | |
|
| **Tulu V2 DPO 70B** | 70B | DPO | **71.5** | 21.2 | |
|
|
|
## Input Format |
|
|
|
The model is trained to use the following format (note the newlines): |
|
``` |
|
<|user|> |
|
Your message here! |
|
<|assistant|> |
|
``` |
|
|
|
For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.** |
|
We have included a [chat template](https://huggingface.co/docs/transformers/main/en/chat_templating) in the tokenizer implementing this template. |
|
|
|
## Model Family |
|
|
|
[Preference Data](https://huggingface.co/datasets/allenai/tulu-2.5-preference-data), [Prompts Data](https://huggingface.co/datasets/allenai/tulu-2.5-prompts) | DPO Models | PPO Models | Reward Models | Value Models | |
|
|-------------|-------------|-------------|---------------|---------------| |
|
| ultrafeedback_mean_aspects | [tulu-v2.5-dpo-13b-uf-mean](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-uf-mean) | [tulu-v2.5-ppo-13b-uf-mean-70b-uf-rm](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-70b-uf-rm) | [tulu-v2.5-70b-uf-rm](https://huggingface.co/allenai/tulu-v2.5-70b-uf-rm) | [tulu-v2.5-ppo-13b-uf-mean-70b-uf-rm-value](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-70b-uf-rm-value) | |
|
| preference_big_mixture | = | [tulu-v2.5-ppo-13b-uf-mean-13b-mix-rm](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-13b-mix-rm) | [tulu-v2.5-13b-preference-mix-rm](https://huggingface.co/allenai/tulu-v2.5-13b-preference-mix-rm) | [tulu-v2.5-ppo-13b-uf-mean-13b-mix-rm-value](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-13b-mix-rm-value) | |
|
| preference_big_mixture | = | [tulu-v2.5-ppo-13b-uf-mean-70b-mix-rm](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-70b-mix-rm) | [tulu-v2.5-70b-preference-mix-rm](https://huggingface.co/allenai/tulu-v2.5-70b-preference-mix-rm) | [tulu-v2.5-ppo-13b-uf-mean-70b-mix-rm-value](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-70b-mix-rm-value) | |
|
| ultrafeedback_mean_aspects | = | [tulu-v2.5-ppo-13b-uf-mean](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean) | [tulu-v2.5-13b-uf-rm](https://huggingface.co/allenai/tulu-v2.5-13b-uf-rm) | [tulu-v2.5-ppo-13b-uf-mean-13b-uf-rm-value](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-13b-uf-rm-value) | |
|
| ultrafeedback_mean_aspects | = | [tulu-v2.5-ppo-13b-uf-mean-70b-uf-rm-mixed-prompts](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-70b-uf-rm-mixed-prompts) | [tulu-v2.5-70b-uf-rm](https://huggingface.co/allenai/tulu-v2.5-70b-uf-rm) * with extra prompts | [tulu-v2.5-ppo-13b-uf-mean-70b-uf-rm-mixed-prompts-value](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-70b-uf-rm-mixed-prompts-value) | |
|
| hh_rlhf_60k | [tulu-v2.5-dpo-13b-hh-rlhf-60k](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-hh-rlhf-60k) | [tulu-v2.5-ppo-13b-hh-rlhf-60k](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-hh-rlhf-60k) | [tulu-v2.5-13b-hh-rlhf-60k-rm](https://huggingface.co/allenai/tulu-v2.5-13b-hh-rlhf-60k-rm) | | |
|
| chatbot_arena_2023 | [tulu-v2.5-dpo-13b-chatbot-arena-2023](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-chatbot-arena-2023) | [tulu-v2.5-ppo-13b-chatbot-arena-2023](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-chatbot-arena-2023) | [tulu-v2.5-13b-chatbot-arena-2023-rm](https://huggingface.co/allenai/tulu-v2.5-13b-chatbot-arena-2023-rm) | | |
|
| stack_exchange_60k | [tulu-v2.5-dpo-13b-stackexchange-60k](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-stackexchange-60k) | [tulu-v2.5-ppo-13b-stackexchange-60k](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-stackexchange-60k) | [tulu-v2.5-13b-stackexchange-60k-rm](https://huggingface.co/allenai/tulu-v2.5-13b-stackexchange-60k-rm) | | |
|
| nectar_60k | N/A | [tulu-v2.5-ppo-13b-nectar-60k](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-nectar-60k) | [tulu-v2.5-13b-nectar-60k-rm](https://huggingface.co/allenai/tulu-v2.5-13b-nectar-60k-rm) | | |
|
| nectar | [tulu-v2.5-dpo-13b-nectar](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-nectar) | | | | |
|
| helpsteer | [tulu-v2.5-dpo-13b-helpsteer](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-helpsteer) | | | | |
|
| shp2 | [tulu-v2.5-dpo-13b-shp2](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-shp2) | | | | |
|
| stack_exchange_paired | [tulu-v2.5-dpo-13b-stackexchange](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-stackexchange) | | | | |
|
| ultrafeedback_overall | [tulu-v2.5-dpo-13b-uf-overall](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-uf-overall) | | | | |
|
| capybara | [tulu-v2.5-dpo-13b-capybara](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-capybara) | | | | |
|
| prm800k_pairs_phase2 | [tulu-v2.5-dpo-13b-prm-phase-2](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-prm-phase-2) | | | | |
|
| hh_rlhf | [tulu-v2.5-dpo-13b-hh-rlhf](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-hh-rlhf) | | | | |
|
| chatbot_arena_2024 | [tulu-v2.5-dpo-13b-chatbot-arena-2024](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-chatbot-arena-2024) | | | | |
|
| alpaca_farm_human_pref | [tulu-v2.5-dpo-13b-alpacafarm-human-pref](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-alpacafarm-human-pref) | | | | |
|
| alpaca_farm_gpt4_pref | [tulu-v2.5-dpo-13b-alpacafarm-gpt4-pref](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-alpacafarm-gpt4-pref) | | | | |
|
| orca_dpo_pairs | [tulu-v2.5-dpo-13b-argilla-orca-pairs](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-argilla-orca-pairs) | | | | |
|
|
|
*The extra prompts are all the prompts in the prompts dataset. Default only uses the split `ultrafeedback_prompts`. |
|
|
|
## Intended uses & limitations |
|
|
|
The model was initially fine-tuned on a filtered and preprocessed of the [Tulu V2 mix dataset](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture), which contains a diverse range of human created instructions and synthetic dialogues generated primarily by other LLMs. |
|
We then further aligned the model with a [Jax DPO trainer](https://github.com/hamishivi/EasyLM/blob/main/EasyLM/models/llama/llama_train_dpo.py) built on [EasyLM](https://github.com/young-geng/EasyLM) on the dataset mentioned above. |
|
|
|
## Bias, Risks, and Limitations |
|
|
|
The Tulu models have not been aligned to generate safe completions within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). |
|
It is also unknown what the size and composition of the corpus was used to train the base Llama 2 models, however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this. |
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during PPO training: |
|
- learning_rate: 1e-06 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1.0 |
|
- KL penalty coefficient: 0.0325 |
|
|
|
## Citation |
|
|
|
If you find Tulu 2.5 is useful in your work, please cite it with: |
|
|
|
``` |
|
@misc{ivison2024unpacking, |
|
title={{Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback}}, |
|
author={{Hamish Ivison and Yizhong Wang and Jiacheng Liu and Ellen Wu and Valentina Pyatkin and Nathan Lambert and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi}} |
|
year={2024}, |
|
eprint={2406.09279}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |