|
--- |
|
license: mit |
|
base_model: dbmdz/distilbert-base-turkish-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: acer_nitro_distilbert_turk |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# acer_nitro_distilbert_turk |
|
|
|
This model is a fine-tuned version of [dbmdz/distilbert-base-turkish-cased](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7724 |
|
- F1: 0.7596 |
|
- Roc Auc: 0.8506 |
|
- Accuracy: 0.6386 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| |
|
| No log | 1.0 | 166 | 0.6408 | 0.7330 | 0.8464 | 0.5904 | |
|
| No log | 2.0 | 332 | 0.6674 | 0.7549 | 0.8434 | 0.6386 | |
|
| No log | 3.0 | 498 | 0.7058 | 0.7573 | 0.8470 | 0.6145 | |
|
| 0.3537 | 4.0 | 664 | 0.7887 | 0.7333 | 0.8358 | 0.6145 | |
|
| 0.3537 | 5.0 | 830 | 0.8267 | 0.7586 | 0.8447 | 0.6265 | |
|
| 0.3537 | 6.0 | 996 | 0.7217 | 0.7477 | 0.8491 | 0.6506 | |
|
| 0.191 | 7.0 | 1162 | 0.7180 | 0.7593 | 0.8588 | 0.6506 | |
|
| 0.191 | 8.0 | 1328 | 0.7742 | 0.7670 | 0.8531 | 0.6386 | |
|
| 0.191 | 9.0 | 1494 | 0.7798 | 0.7560 | 0.8493 | 0.6265 | |
|
| 0.1294 | 10.0 | 1660 | 0.7724 | 0.7596 | 0.8506 | 0.6386 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|