Base model

bigscience/bloomz-560m

Training procedure

According to edX Databricks llm102 course

PromptTuningConfig

  • task_type=TaskType.CAUSAL_LM,
  • prompt_tuning_init=PromptTuningInit.RANDOM,
  • num_virtual_tokens=4,

TrainingArguments

  • learning_rate= 3e-2, # Higher learning rate than full fine-tuning
  • num_train_epochs=5 # Number of passes to go through the entire fine-tuning dataset

Framework versions

  • PEFT 0.4.0

Training output

TrainOutput(global_step=35, training_loss=3.386413792201451, metrics={'train_runtime': 617.1546, 'train_samples_per_second': 0.405, 'train_steps_per_second': 0.057, 'total_flos': 58327152033792.0, 'train_loss': 3.386413792201451, 'epoch': 5.0})

Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train alikehuggie/llm_finetune