autoevaluator
HF staff
Add evaluation results on the alex-apostolo--filtered-cuad config and test split of alex-apostolo/filtered-cuad
19f956c
metadata
license: mit
tags:
- generated_from_trainer
datasets:
- alex-apostolo/filtered-cuad
model-index:
- name: roberta-base-filtered-cuad
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: alex-apostolo/filtered-cuad
type: alex-apostolo/filtered-cuad
config: alex-apostolo--filtered-cuad
split: test
metrics:
- type: f1
value: 71.4517
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWEzOTZkOTUwNzcxOTA2MTkxZmE2YzJlMDgyNzljOTgyMzAwZWM4MzVkYjkxZjYxYTRkNDQyMmYzNjk5MzU2ZSIsInZlcnNpb24iOjF9.qSR7O9rUJ0gpaPrVhX9UmlrQGYVLyCDjEUvOVCu59OeaGuqsvY7-bppTl702UAiXT6eP9RSN5SGtxMVlmgU_CA
- type: exact
value: 69.1239
name: Exact Match
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmJhYzcxOWJjNWI4NjNiYjAyY2NhNjIzNTNhMmIwOTA2MGNmNTVhZjZmNDU2MDYwNDZmYjM2MTY5YWI4NDQ4ZCIsInZlcnNpb24iOjF9.vPsieQjxMN7QQk9mLtFCGOCFMqziBRWlf0_KhZp3wFTOSpA_U88ifDQRV4uedLs9-IzEAz3I_NOMijMrpW_AAw
- type: loss
value: 0.054761599749326706
name: loss
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjBhOTFkYTBjOGU1NjlmOGExNWViYjYzMTAyZTQ0MGRkMGQ2MTkwODkwY2I1NTkzMjI5OGI4NWFlYzdmYjJjNiIsInZlcnNpb24iOjF9.nEMGXH-CvWl1RUNIny3_IyjHyPDI9hHQNd2hRMAwjb8iV_73ie48I6h0iVnRRWwnKcYzvamt-LzKheVVIN3ICQ
roberta-base-filtered-cuad
This model is a fine-tuned version of roberta-base on the cuad dataset. It achieves the following results on the evaluation set:
- Loss: 0.0396
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0502 | 1.0 | 8442 | 0.0467 |
0.0397 | 2.0 | 16884 | 0.0436 |
0.032 | 3.0 | 25326 | 0.0396 |
Framework versions
- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1