|
--- |
|
library_name: peft |
|
datasets: |
|
- InstaDeepAI/nucleotide_transformer_downstream_tasks_revised |
|
metrics: |
|
- f1 |
|
base_model: |
|
- tattabio/gLM2_150M |
|
model-index: |
|
- name: alejandralopezsosa/gLM2_150M-promoter_tata-lora |
|
results: |
|
- task: |
|
type: sequence-classification |
|
dataset: |
|
type: InstaDeepAI/nucleotide_transformer_downstream_tasks_revised |
|
name: nucleotide_transformer_downstream_tasks_revised |
|
config: promoter_tata |
|
split: test |
|
revision: c8c94743d3d2838b943398ee676247ac2f774122 |
|
metrics: |
|
- type: f1 |
|
value: 0.9811 |
|
--- |
|
|
|
# gLM2 LoRA adapter for TATA promoter recognition |
|
|
|
This model demonstrates the use of [gLM2_150M](https://huggingface.co/tattabio/gLM2_150M) embeddings for downstream classification. |
|
The model is fine-tuned using LoRA and obtains an F1 score of 98.11% on the TATA promoter task from the [Nucleotide Transformer benchmarks](https://huggingface.co/datasets/InstaDeepAI/nucleotide_transformer_downstream_tasks_revised). |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to use the model for inference: |
|
|
|
```python |
|
from peft import PeftModel |
|
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoModel |
|
|
|
glm2 = "tattabio/gLM2_150M" |
|
adapter = "alejandralopezsosa/gLM2_150M-promoter_tata-lora" |
|
|
|
load_kwargs = { |
|
'trust_remote_code': True, |
|
'torch_dtype': torch.bfloat16, |
|
} |
|
|
|
config = AutoConfig.from_pretrained(adapter, **load_kwargs) |
|
base_model = AutoModelForSequenceClassification.from_config(config, **load_kwargs) |
|
base_model.glm2 = AutoModel.from_pretrained("tattabio/gLM2_150M", **load_kwargs) |
|
|
|
model = PeftModel.from_pretrained(base_model, adapter) |
|
``` |
|
|