Visualize in Weights & Biases

zephyr-7b-gemma-dpo

This model is a fine-tuned version of google/gemma-7b on the argilla/dpo-mix-7k dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8036
  • Rewards/chosen: -0.4463
  • Rewards/rejected: -1.2861
  • Rewards/accuracies: 0.7292
  • Rewards/margins: 0.8397
  • Logps/rejected: -1648.0323
  • Logps/chosen: -1530.0571
  • Logits/rejected: -25.1620
  • Logits/chosen: -18.0449

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.4114 1.8957 100 0.8002 -0.4660 -1.3128 0.7604 0.8468 -1648.5675 -1530.4515 -25.1625 -18.0007

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
18
Safetensors
Model size
8.54B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ale-bay/zephyr-7b-gemma-dpo

Base model

google/gemma-7b
Finetuned
(99)
this model

Dataset used to train ale-bay/zephyr-7b-gemma-dpo