datasets:
- akhtet/myXNLI
metrics:
- accuracy
pipeline_tag: zero-shot-classification
widget:
- text: >-
မြန်မာ့စီးပွားရေးမှာ ရွှေ နဲ့ ဒေါ်လာက အရေးပါသလို ဒေါ်လာစျေးပေါ်မူတည်ပြီး
အခြားစားသောက်ကုန်ပစ္စည်းတွေကလည်း လိုက်ပါပြောင်းလဲလေ့ ရှိပါတယ်။
candidate_labels: commerce, fashion, music, politics, sports
multi_class: false
example_title: Myanmar Economy
- text: >-
၂၀၁၇ ခုနှစ် ဇွန်လ ၃၀ ရက်နေ့တွင် ရန်ကုန်မြို့၌ ကျင်းပသော
ကိုယ်ခံပညာပေါင်းစုံ ပြိုင်ပွဲ မစ်ဒယ်ဝိတ်တန်း ကမ္ဘာ့ချန်ပီယံလုပွဲတွင်
အောင်လအန်ဆန်က လက်ရှိ ချန်ပီယံ ဘစ်ဒက်ရှ်ကို လက်ရည်အသာဖြင့် ထိုးသတ်ပြီး
အမှတ်ဖြင့် အနိုင်ရကာ ကမ္ဘာ့ချန်ပီယံဆု ဆွတ်ခူးနိုင်သော ပထမဆုံး မြန်မာတစ်ဦး
ဖြစ်လာသည်။
candidate_labels: boxing, football, MMA, racing, swimming
multi_class: false
example_title: MMA Championship
- text: >-
မြန်မာ့ရိုးရာ အစားအစာတစ်မျိုးဖြစ်သော မုန့်ဟင်းငါးသည် အချဉ်ဖောက်
ပြုလုပ်သည့် ဆန်ခေါက်ဆွဲဖတ် (မုန့်ဖတ်) လေးများနှင့် ငါးဖြင့် အဓိက
ချက်လုပ်သော မုန့်ဟင်းငါးဟင်းရည် ခေါ် ဟင်းငါးရည် တို့ကို အခြား
အစာပလာများနှင့် အတူတွဲဖက် စားသုံးရသည့် သွားရည်စာ တစ်မျိုးဖြစ်သည်။
candidate_labels: chicken, fish, food, rice, soup
multi_class: true
example_title: Local Food
license: mit
language:
- my
- en
Model Card for mDeBERTa-v3-base-myXNLI
mDeBERTa-v3-base-myXNLI is a transformer model for text classification English and Myanmar (Burmese).
It is based on multilingual DeBERTa v3 model and fine-tuned using myXNLI dataset on the Natural Language Inference task in English and Myanmar.
Thus it is useful for Natural Language Inference and related tasks such as Zero-shot Text Classification on both English and Myanmar data.
Model Details
- Model type: Transformer Encoder
- Language(s) (NLP): Fine-tuned for Myanmar (Burmese) and English
- License: MIT
- Finetuned from model: mDeBERTa v3 base https://huggingface.co/microsoft/mdeberta-v3-base
- Paper : Myanmar XNLI https://www.researchsquare.com/article/rs-4329843
- Demo : A demo of Zero-shot Text Classification in Myanmar can be found on this page.
Bias, Risks, and Limitations
Please refer to the papers for original foundation model: DeBERTa https://arxiv.org/abs/2006.03654 and DeBERTaV3 https://arxiv.org/abs/2111.09543.
How to Get Started with the Model
Use the code below to get started with the model for zero-shot classification task.
from transformers import pipeline
classifier = pipeline(task="zero-shot-classification", model="akhtet/mDeBERTa-v3-base-myXNLI", framework="pt")
output = classifier("မြန်မာ့စီးပွားရေးမှာ ရွှေ နဲ့ ဒေါ်လာက အရေးပါသလို ဒေါ်လာစျေးပေါ်မူတည်ပြီး အခြားစားသောက်ကုန်ပစ္စည်းတွေကလည်း လိုက်ပါပြောင်းလဲလေ့ ရှိပါတယ်။",
candidate_labels=["commerce", "fashion", "music", "politics", "sports"],
)
print (output)
# output
# {'sequence': 'မြန်မာ့စီးပွားရေးမှာ ရွှေ နဲ့ ဒေါ်လာက အရေးပါသလို ဒေါ်လာစျေးပေါ်မူတည်ပြီး အခြားစားသောက်ကုန်ပစ္စည်းတွေကလည်း လိုက်ပါပြောင်းလဲလေ့ ရှိပါတယ်။',
# 'labels': ['commerce', 'politics', 'fashion', 'music', 'sports'],
# 'scores': [0.8995707631111145, 0.048580411821603775, 0.035297513008117676, 0.009092549793422222, 0.007458842825144529]}
Fore more details on zero-shot classification, please refer to HuggingFace documentation https://huggingface.co/tasks/zero-shot-classification
Training Details
The model is fine-tuned on myXNLI dataset https://huggingface.co/datasets/akhtet/myXNLI. The English portion of myXNLI is from XNLI dataset.
From this dataset, 4 different copies training data from myXNLI were concatenated, each with sentence pairs in en-en, en-my, my-en and my-my combinations.
Training on cross-matched language data as above improved the NLI accuracy over training separately in each language. This approach was inspired by another model https://huggingface.co/joeddav/xlm-roberta-large-xnli
The model was fine-tuned using this combined dataset for a single epoch.
Evaluation
This model has been evaluted on myXNLI testset for Myanmar accuracy. We also provide the accuracy for English using XNLI testset.
Model | English accuracy | Myanmar accuracy |
---|---|---|
mDeBERTa-v3-base-myXNLI | 88.02 | 80.99 |
Citation
[More Information Needed]
Model Card Contact
Aung Kyaw Htet