Turkish Named Entity Recognition (NER) Model

This model is the fine-tuned version of "xlm-roberta-base" (a multilingual version of RoBERTa) using a reviewed version of well known Turkish NER dataset (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt).

Fine-tuning parameters:

task = "ner"
model_checkpoint = "xlm-roberta-base"
batch_size = 8 
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
max_length = 512 
learning_rate = 2e-5 
num_train_epochs = 2 
weight_decay = 0.01 

How to use:

model = AutoModelForTokenClassification.from_pretrained("akdeniz27/xlm-roberta-base-turkish-ner")
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/xlm-roberta-base-turkish-ner")
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple")
ner("<your text here>")

Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.

Reference test results:

  • accuracy: 0.9919343118732742
  • f1: 0.9492100796448622
  • precision: 0.9407349896480332
  • recall: 0.9578392621870883
Downloads last month
108
Safetensors
Model size
277M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using akdeniz27/xlm-roberta-base-turkish-ner 5