llama2-7b-qlora-finetuned_1

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4910
  • Model Preparation Time: 0.0048

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time
8.4619 0.1669 100 0.5918 0.0048
0.5531 0.3339 200 0.5314 0.0048
0.5311 0.5008 300 0.5164 0.0048
0.5179 0.6677 400 0.5114 0.0048
0.5168 0.8346 500 0.5072 0.0048
0.5124 1.0016 600 0.5034 0.0048
0.5053 1.1685 700 0.5003 0.0048
0.5047 1.3354 800 0.5001 0.0048
0.5008 1.5023 900 0.4967 0.0048
0.4985 1.6693 1000 0.4969 0.0048
0.4998 1.8362 1100 0.4941 0.0048
0.4987 2.0031 1200 0.4978 0.0048
0.4939 2.1701 1300 0.4933 0.0048
0.4907 2.3370 1400 0.4923 0.0048
0.4947 2.5039 1500 0.4910 0.0048
0.4896 2.6708 1600 0.4901 0.0048
0.4923 2.8378 1700 0.4896 0.0048

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
39
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for aithal/llama2-7b-qlora-finetuned_1

Adapter
(1767)
this model