|
--- |
|
language: th |
|
datasets: |
|
- common_voice |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning |
|
- robust-speech-event |
|
- hf-asr-leaderboard |
|
license: cc-by-sa-4.0 |
|
model-index: |
|
- name: XLS-R-53 - Thai |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 7 |
|
type: mozilla-foundation/common_voice_7_0 |
|
args: th |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 0.9524 |
|
- name: Test SER |
|
type: ser |
|
value: 1.2346 |
|
- name: Test CER |
|
type: cer |
|
value: 0.1623 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: sv |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: null |
|
- name: Test SER |
|
type: ser |
|
value: null |
|
- name: Test CER |
|
type: cer |
|
value: null |
|
--- |
|
|
|
# `wav2vec2-large-xlsr-53-th` |
|
Finetuning `wav2vec2-large-xlsr-53` on Thai [Common Voice 7.0](https://commonvoice.mozilla.org/en/datasets) |
|
|
|
[Read more on our blog](https://medium.com/airesearch-in-th/airesearch-in-th-3c1019a99cd) |
|
|
|
We finetune [wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) based on [Fine-tuning Wav2Vec2 for English ASR](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_tuning_Wav2Vec2_for_English_ASR.ipynb) using Thai examples of [Common Voice Corpus 7.0](https://commonvoice.mozilla.org/en/datasets). The notebooks and scripts can be found in [vistec-ai/wav2vec2-large-xlsr-53-th](https://github.com/vistec-ai/wav2vec2-large-xlsr-53-th). The pretrained model and processor can be found at [airesearch/wav2vec2-large-xlsr-53-th](https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th). |
|
|
|
## `robust-speech-event` |
|
|
|
Add `syllable_tokenize`, `word_tokenize` ([PyThaiNLP](https://github.com/PyThaiNLP/pythainlp)) and [deepcut](https://github.com/rkcosmos/deepcut) tokenizers to `eval.py` from [robust-speech-event](https://github.com/huggingface/transformers/tree/master/examples/research_projects/robust-speech-event#evaluation) |
|
|
|
``` |
|
> python eval.py --model_id ./ --dataset mozilla-foundation/common_voice_7_0 --config th --split test --log_outputs --thai_tokenizer newmm/syllable/deepcut/cer |
|
``` |
|
|
|
### Eval results on Common Voice 7 "test": |
|
|
|
| | WER PyThaiNLP 2.3.1 | WER deepcut | SER | CER | |
|
|---------------------------------|---------------------|-------------|---------|---------| |
|
| Only Tokenization | 0.9524% | 2.5316% | 1.2346% | 0.1623% | |
|
| Cleaning rules and Tokenization | TBD | TBD | TBD | TBD | |
|
|
|
|
|
## Usage |
|
|
|
``` |
|
#load pretrained processor and model |
|
processor = Wav2Vec2Processor.from_pretrained("airesearch/wav2vec2-large-xlsr-53-th") |
|
model = Wav2Vec2ForCTC.from_pretrained("airesearch/wav2vec2-large-xlsr-53-th") |
|
|
|
#function to resample to 16_000 |
|
def speech_file_to_array_fn(batch, |
|
text_col="sentence", |
|
fname_col="path", |
|
resampling_to=16000): |
|
speech_array, sampling_rate = torchaudio.load(batch[fname_col]) |
|
resampler=torchaudio.transforms.Resample(sampling_rate, resampling_to) |
|
batch["speech"] = resampler(speech_array)[0].numpy() |
|
batch["sampling_rate"] = resampling_to |
|
batch["target_text"] = batch[text_col] |
|
return batch |
|
|
|
#get 2 examples as sample input |
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
#infer |
|
with torch.no_grad(): |
|
logits = model(inputs.input_values,).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
print("Prediction:", processor.batch_decode(predicted_ids)) |
|
print("Reference:", test_dataset["sentence"][:2]) |
|
|
|
>> Prediction: ['และ เขา ก็ สัมผัส ดีบุก', 'คุณ สามารถ รับทราบ เมื่อ ข้อความ นี้ ถูก อ่าน แล้ว'] |
|
>> Reference: ['และเขาก็สัมผัสดีบุก', 'คุณสามารถรับทราบเมื่อข้อความนี้ถูกอ่านแล้ว'] |
|
``` |
|
|
|
## Datasets |
|
|
|
Common Voice Corpus 7.0](https://commonvoice.mozilla.org/en/datasets) contains 133 validated hours of Thai (255 total hours) at 5GB. We pre-tokenize with `pythainlp.tokenize.word_tokenize`. We preprocess the dataset using cleaning rules described in `notebooks/cv-preprocess.ipynb` by [@tann9949](https://github.com/tann9949). We then deduplicate and split as described in [ekapolc/Thai_commonvoice_split](https://github.com/ekapolc/Thai_commonvoice_split) in order to 1) avoid data leakage due to random splits after cleaning in [Common Voice Corpus 7.0](https://commonvoice.mozilla.org/en/datasets) and 2) preserve the majority of the data for the training set. The dataset loading script is `scripts/th_common_voice_70.py`. You can use this scripts together with `train_cleand.tsv`, `validation_cleaned.tsv` and `test_cleaned.tsv` to have the same splits as we do. The resulting dataset is as follows: |
|
|
|
``` |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['path', 'sentence'], |
|
num_rows: 86586 |
|
}) |
|
test: Dataset({ |
|
features: ['path', 'sentence'], |
|
num_rows: 2502 |
|
}) |
|
validation: Dataset({ |
|
features: ['path', 'sentence'], |
|
num_rows: 3027 |
|
}) |
|
}) |
|
``` |
|
|
|
## Training |
|
|
|
We fintuned using the following configuration on a single V100 GPU and chose the checkpoint with the lowest validation loss. The finetuning script is `scripts/wav2vec2_finetune.py` |
|
|
|
``` |
|
# create model |
|
model = Wav2Vec2ForCTC.from_pretrained( |
|
"facebook/wav2vec2-large-xlsr-53", |
|
attention_dropout=0.1, |
|
hidden_dropout=0.1, |
|
feat_proj_dropout=0.0, |
|
mask_time_prob=0.05, |
|
layerdrop=0.1, |
|
gradient_checkpointing=True, |
|
ctc_loss_reduction="mean", |
|
pad_token_id=processor.tokenizer.pad_token_id, |
|
vocab_size=len(processor.tokenizer) |
|
) |
|
model.freeze_feature_extractor() |
|
training_args = TrainingArguments( |
|
output_dir="../data/wav2vec2-large-xlsr-53-thai", |
|
group_by_length=True, |
|
per_device_train_batch_size=32, |
|
gradient_accumulation_steps=1, |
|
per_device_eval_batch_size=16, |
|
metric_for_best_model='wer', |
|
evaluation_strategy="steps", |
|
eval_steps=1000, |
|
logging_strategy="steps", |
|
logging_steps=1000, |
|
save_strategy="steps", |
|
save_steps=1000, |
|
num_train_epochs=100, |
|
fp16=True, |
|
learning_rate=1e-4, |
|
warmup_steps=1000, |
|
save_total_limit=3, |
|
report_to="tensorboard" |
|
) |
|
``` |
|
|
|
## Evaluation |
|
|
|
We benchmark on the test set using WER with words tokenized by [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp) 2.3.1 and [deepcut](https://github.com/rkcosmos/deepcut), and CER. We also measure performance when spell correction using [TNC](http://www.arts.chula.ac.th/ling/tnc/) ngrams is applied. Evaluation codes can be found in `notebooks/wav2vec2_finetuning_tutorial.ipynb`. Benchmark is performed on `test-unique` split. |
|
|
|
| | WER PyThaiNLP 2.3.1 | WER deepcut | CER | |
|
|--------------------------------|---------------------|----------------|----------------| |
|
| [Kaldi from scratch](https://github.com/vistec-AI/commonvoice-th) | 23.04 | | 7.57 | |
|
| Ours without spell correction | 13.634024 | **8.152052** | **2.813019** | |
|
| Ours with spell correction | 17.996397 | 14.167975 | 5.225761 | |
|
| Google Web Speech API※ | 13.711234 | 10.860058 | 7.357340 | |
|
| Microsoft Bing Speech API※ | **12.578819** | 9.620991 | 5.016620 | |
|
| Amazon Transcribe※ | 21.86334 | 14.487553 | 7.077562 | |
|
| NECTEC AI for Thai Partii API※ | 20.105887 | 15.515631 | 9.551027 | |
|
|
|
※ APIs are not finetuned with Common Voice 7.0 data |
|
|
|
## LICENSE |
|
|
|
[cc-by-sa 4.0](https://github.com/vistec-AI/wav2vec2-large-xlsr-53-th/blob/main/LICENSE) |
|
|
|
## Ackowledgements |
|
* model training and validation notebooks/scripts [@cstorm125](https://github.com/cstorm125/) |
|
* dataset cleaning scripts [@tann9949](https://github.com/tann9949) |
|
* dataset splits [@ekapolc](https://github.com/ekapolc/) and [@14mss](https://github.com/14mss) |
|
* running the training [@mrpeerat](https://github.com/mrpeerat) |
|
* spell correction [@wannaphong](https://github.com/wannaphong) |
|
|
|
|