address-ner-ru
Address NER model to find address parts from string
https://huggingface.co/aidarmusin/address-ner-ru
Dataset
5K raw addresses dataset
90% for training and 10% for evaluation
Evaluation
Metric | Value |
---|---|
eval_overall_precision | 0.9550486413955048 |
eval_overall_recall | 0.9644308943089431 |
eval_overall_f1 | 0.9597168380246082 |
eval_overall_accuracy | 0.9770456798596813 |
eval_Apartment_f1 | 0.9663865546218489 |
eval_Apartment_number | 352 |
eval_Building_precision | 0.8695652173913043 |
eval_Building_recall | 0.9195402298850575 |
eval_Building_f1 | 0.8938547486033519 |
eval_Building_number | 87 |
eval_Country_precision | 0.9950738916256158 |
eval_Country_recall | 0.9805825242718447 |
eval_Country_f1 | 0.9877750611246944 |
eval_Country_number | 206 |
eval_District_precision | 0.9562043795620438 |
eval_District_recall | 0.9924242424242424 |
eval_District_f1 | 0.9739776951672863 |
eval_District_number | 132 |
eval_House_precision | 0.9702380952380952 |
eval_House_recall | 0.9760479041916168 |
eval_House_f1 | 0.973134328358209 |
eval_House_number | 501 |
eval_Region_precision | 0.9826989619377162 |
eval_Region_recall | 0.9861111111111112 |
eval_Region_f1 | 0.9844020797227037 |
eval_Region_number | 288 |
eval_Settlement_precision | 0.9599271402550091 |
eval_Settlement_recall | 0.9547101449275363 |
eval_Settlement_f1 | 0.9573115349682106 |
eval_Settlement_number | 552 |
eval_Street_precision | 0.9424603174603174 |
eval_Street_recall | 0.9615384615384616 |
eval_Street_f1 | 0.9519038076152305 |
eval_Street_number | 494 |
eval_ZipCode_precision | 0.9208211143695014 |
eval_ZipCode_recall | 0.9235294117647059 |
eval_ZipCode_f1 | 0.9221732745961821 |
eval_ZipCode_number | 340 |
Example
from transformers import pipeline
import torch
import logging
device = "cuda:0" if torch.cuda.is_available() else "cpu"
logging.info(f"using device: {device}")
address_ner_pipeline = pipeline("ner", model="aidarmusin/address-ner-ru", device=device)
address = "628672,,,, Автономный Округ Ханты-Мансийский Автономный Округ - Югра,, Г. Лангепас, Ул. Солнечная, Д.21"
entities = address_ner_pipeline(address)
print(entities)
- Downloads last month
- 22,200
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.