|
--- |
|
language: or |
|
metrics: |
|
- wer |
|
- cer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- wav2vec2 |
|
- asr |
|
license: apache-2.0 |
|
--- |
|
|
|
# IndicWav2Vec-Hindi |
|
|
|
This is a [Wav2Vec2](https://arxiv.org/abs/2006.11477) style ASR model trained in [fairseq](https://github.com/facebookresearch/fairseq) and ported to Hugging Face. |
|
More details on datasets, training-setup and conversion to HuggingFace format can be found in the [IndicWav2Vec](https://github.com/AI4Bharat/IndicWav2Vec) repo. |
|
|
|
## Script to Run Inference |
|
|
|
```python |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import AutoModelForCTC, AutoProcessor |
|
import torchaudio.functional as F |
|
|
|
DEVICE_ID = "cuda" if torch.cuda.is_available() else "cpu" |
|
MODEL_ID = "ai4bharat/indicwav2vec-odia" |
|
|
|
sample = next(iter(load_dataset("common_voice", "or", split="test", streaming=True))) |
|
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48000, 16000).numpy() |
|
|
|
model = AutoModelForCTC.from_pretrained(MODEL_ID).to(DEVICE_ID) |
|
processor = AutoProcessor.from_pretrained(MODEL_ID) |
|
|
|
input_values = processor(resampled_audio, return_tensors="pt").input_values |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values.to(DEVICE_ID)).logits.cpu() |
|
|
|
prediction_ids = torch.argmax(logits, dim=-1) |
|
output_str = processor.batch_decode(prediction_ids)[0] |
|
print(f"Greedy Decoding: {output_str}") |
|
``` |
|
|
|
# **About AI4Bharat** |
|
- Website: https://ai4bharat.org/ |
|
- Code: https://github.com/AI4Bharat |
|
- HuggingFace: https://huggingface.co/ai4bharat |