Train-Test-Augmentation-V5-beit-base

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6899
  • Accuracy: 0.8442

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0473 1.0 55 0.8312 0.7759
0.3767 2.0 110 0.5476 0.8336
0.176 3.0 165 0.5248 0.8256
0.07 4.0 220 0.5597 0.8527
0.043 5.0 275 0.5707 0.8472
0.0272 6.0 330 0.6225 0.8264
0.0168 7.0 385 0.5721 0.8553
0.0076 8.0 440 0.5967 0.8608
0.006 9.0 495 0.7036 0.8272
0.007 10.0 550 0.7167 0.8400
0.0048 11.0 605 0.6734 0.8506
0.0023 12.0 660 0.7424 0.8332
0.0032 13.0 715 0.7283 0.8340
0.002 14.0 770 0.6805 0.8502
0.0021 15.0 825 0.6899 0.8442

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.15.2
Downloads last month
23
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ahmedesmail16/Train-Test-Augmentation-V5-beit-base

Finetuned
(61)
this model