|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/beit-large-patch16-224-pt22k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: Psoriasis-500-100aug-224-beit-large |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7991266375545851 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Psoriasis-500-100aug-224-beit-large |
|
|
|
This model is a fine-tuned version of [microsoft/beit-large-patch16-224-pt22k](https://huggingface.co/microsoft/beit-large-patch16-224-pt22k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1823 |
|
- Accuracy: 0.7991 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| 0.8236 | 0.9973 | 92 | 1.1536 | 0.6358 | |
|
| 0.4282 | 1.9946 | 184 | 0.8848 | 0.7389 | |
|
| 0.2305 | 2.9919 | 276 | 0.9811 | 0.7258 | |
|
| 0.1206 | 4.0 | 369 | 0.8858 | 0.7808 | |
|
| 0.1107 | 4.9973 | 461 | 1.1129 | 0.7397 | |
|
| 0.0319 | 5.9946 | 553 | 1.1625 | 0.7703 | |
|
| 0.0073 | 6.9919 | 645 | 1.1938 | 0.7895 | |
|
| 0.0078 | 8.0 | 738 | 1.3031 | 0.7790 | |
|
| 0.0013 | 8.9973 | 830 | 1.2117 | 0.7974 | |
|
| 0.002 | 9.9729 | 920 | 1.1823 | 0.7991 | |
|
|
|
# Classification Report |
|
|
|
| Class | Precision (%) | Recall (%) | F1-Score (%) | Support | |
|
|---------------------|---------------|------------|--------------|---------| |
|
| Abnormal | 66 | 62 | 64 | 108 | |
|
| Erythrodermic | 96 | 76 | 85 | 100 | |
|
| Guttate | 95 | 83 | 89 | 114 | |
|
| Inverse | 83 | 91 | 87 | 108 | |
|
| Nail | 81 | 84 | 83 | 99 | |
|
| Normal | 81 | 79 | 80 | 82 | |
|
| Not Define | 98 | 95 | 96 | 92 | |
|
| Palm Soles | 82 | 88 | 85 | 102 | |
|
| Plaque | 70 | 88 | 78 | 84 | |
|
| Psoriatic Arthritis | 78 | 74 | 76 | 104 | |
|
| Pustular | 71 | 76 | 74 | 112 | |
|
| Scalp | 84 | 86 | 85 | 80 | |
|
| **Accuracy** | | | **82** | 1185 | |
|
| **Macro Avg** | **82** | **82** | **82** | 1185 | |
|
| **Weighted Avg** | **82** | **82** | **82** | 1185 | |
|
|
|
--- |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|