SetFit with pysentimiento/robertuito-sentiment-analysis

This is a SetFit model that can be used for Text Classification. This SetFit model uses pysentimiento/robertuito-sentiment-analysis as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
  • "Aquest text és ofensiu o violent o negatiu o inapropiat per a un cercador de tràmits d'un ajuntament"
  • "Aquest text és ofensiu o violent o negatiu o inapropiat per a un cercador de tràmits d'un ajuntament"
  • "Aquest text és ofensiu o violent o negatiu o inapropiat per a un cercador de tràmits d'un ajuntament"
1
  • "Aquest text és valid per a un cercador de tràmits d'un ajuntament"
  • "Aquest text és valid per a un cercador de tràmits d'un ajuntament"
  • "Aquest text és valid per a un cercador de tràmits d'un ajuntament"

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("adriansanz/sentimentv2")
# Run inference
preds = model("Aquest text és valid per a un cercador de tràmits d'un ajuntament")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 12 15.0 18
Label Training Sample Count
0 20
1 20

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0189 1 0.2722 -
0.9434 50 0.0004 -
1.8868 100 0.0003 -
2.8302 150 0.0002 -
3.7736 200 0.0001 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.39.0
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.21.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
10
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for adriansanz/sentimentv2

Finetuned
(6)
this model