metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilroberta-base
results: []
distilroberta-base
This model is a fine-tuned version of distilroberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6935
- Precision: 0.7556
- Recall: 0.7556
- F1: 0.7556
- Accuracy: 0.7556
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2481 | 1.0 | 2355 | 1.5506 | 0.7409 | 0.7409 | 0.7409 | 0.7409 |
0.3473 | 2.0 | 4710 | 1.5572 | 0.7428 | 0.7428 | 0.7428 | 0.7428 |
0.2614 | 3.0 | 7065 | 1.6423 | 0.7539 | 0.7539 | 0.7539 | 0.7539 |
0.1337 | 4.0 | 9420 | 1.6935 | 0.7556 | 0.7556 | 0.7556 | 0.7556 |
Framework versions
- Transformers 4.28.1
- Pytorch 1.13.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3