how to use

from transformers import AutoModelForCausalLM, AutoTokenizer
import textwrap, time

MAX_NEW_TOKENS = 300
model_name = "acul3/bloomz-3b-Instruction"

model = AutoModelForCausalLM.from_pretrained(
  model_name,
  device_map='auto',
  load_in_8bit= True
)


def generate_text(text):
  tokenizer = AutoTokenizer.from_pretrained(model_name)
  text = "User: " + text + "\n\Asisten: "
  input_ids = tokenizer(text, return_tensors="pt").input_ids.to("cuda")
  generated_ids = model.generate(input_ids, max_length=MAX_NEW_TOKENS, pad_token_id=tokenizer.eos_token_id, do_sample=True, top_p=0.95, temperature=0.5, penalty_alpha=0.6, top_k=4, repetition_penalty=1.03, num_return_sequences=1)
  result = textwrap.wrap(tokenizer.decode(generated_ids[0], skip_special_tokens=True), width=128)
  result[0] = result[0].split("Asisten:")[-1]
  return "\n".join(result)

print(generate_text("cara merebus telur"))
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .