absonS's picture
End of training
3395dcc verified
metadata
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: twitter_sentiment_small_4
    results: []

Visualize in Weights & Biases

twitter_sentiment_small_4

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4844
  • Accuracy: 0.824
  • F1-score: 0.8057
  • Precision: 0.8295
  • Recall: 0.7833

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1-score Precision Recall
0.643 0.0889 100 0.5191 0.774 0.7466 0.7817 0.7146
0.4779 0.1778 200 0.4895 0.787 0.7677 0.7805 0.7554
0.4069 0.2667 300 0.4630 0.795 0.7745 0.7946 0.7554
0.4215 0.3556 400 0.4562 0.8 0.7669 0.8393 0.7060
0.4187 0.4444 500 0.4350 0.807 0.7992 0.7758 0.8240
0.4197 0.5333 600 0.4497 0.806 0.7785 0.8317 0.7318
0.4034 0.6222 700 0.4335 0.817 0.8111 0.7813 0.8433
0.4058 0.7111 800 0.4231 0.804 0.7996 0.7637 0.8391
0.4044 0.8 900 0.4404 0.805 0.8056 0.7523 0.8670
0.3678 0.8889 1000 0.4000 0.815 0.8095 0.7782 0.8433
0.3791 0.9778 1100 0.4451 0.814 0.814 0.7622 0.8734
0.3109 1.0667 1200 0.5034 0.817 0.8039 0.8030 0.8047
0.2999 1.1556 1300 0.4740 0.812 0.8105 0.7643 0.8627
0.2902 1.2444 1400 0.4517 0.825 0.8066 0.8314 0.7833
0.2664 1.3333 1500 0.4646 0.83 0.8225 0.8008 0.8455
0.2826 1.4222 1600 0.4844 0.824 0.8057 0.8295 0.7833

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1