ppo-LunarLander-v2 / config.json
abotresol's picture
add PPO LunarLander-v2 trained agent
fa9c405 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78514ec58040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78514ec580d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78514ec58160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78514ec581f0>", "_build": "<function ActorCriticPolicy._build at 0x78514ec58280>", "forward": "<function ActorCriticPolicy.forward at 0x78514ec58310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78514ec583a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78514ec58430>", "_predict": "<function ActorCriticPolicy._predict at 0x78514ec584c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78514ec58550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78514ec585e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78514ec58670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7850f341be00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736735425499658597, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADo1DsUnI+6zJoNPeGRBj1s86u7cy/kPQAAgD8AAIA/ZmAePhsuiryHSsM8NKI8PaRVbr0aPgi+AACAPwAAgD8zuxK8e9yTulr4NrW8F8SuqGYwO428TjQAAIA/AACAP4Aa2z3SHo27Eq8evkYvBb6fPf85e4iYOwAAgD8AAIA/mr8ovcIfSj6FwNe87iFbvotxVrzCAsk7AAAAAAAAAACAGRq9hu1yP7q8ZTpFI7i+J+5IvXa5yzwAAAAAAAAAAE0sHD6xOvo+YBgpvd8kc74PB8E8rQs0PQAAAAAAAAAAM8uwuxxyOD6Ex0s9zyJOvgVanDydjQ+9AAAAAAAAAADTKkk+9z6MP/qRlj4+gr2+Ru55PktLT70AAAAAAAAAAACyMj1scsA/yxmVPv7e9j3uLCs9GzIEPgAAAAAAAAAA5joBPt92Yj9gYk69Sf62vqnqc7n2Ula9AAAAAAAAAABmBMW89vwnui4SwjIbFWswMZGsO5orirMAAIA/AACAP2Zad73SZSE/gJXRPR3bm76pYQe8YmWRPAAAAAAAAAAAc8umPYXT3bluBJi6tc7QN2xnx7nd+iA5AACAPwAAAADaBdC9h94WPg5WAT4R+zK+jvaOPARiPTwAAAAAAAAAAM0qZjxLTJI+xgiuPRyJab49ltU8GheLvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHL7z6N2ki6MAWyUTcABjAF0lEdAlqua4YrJ83V9lChoBkdAa7ISkCV8kWgHTQUBaAhHQJauUeOn2qV1fZQoaAZHQHDWrPldTpBoB00JAWgIR0CWrvV2A5JcdX2UKGgGR0BxqeXQdCE6aAdNGwFoCEdAlq8AD7qIJ3V9lChoBkdAbJeUEgW8AmgHTQABaAhHQJavPn1WbPR1fZQoaAZHQG8wWFnIyTJoB00JAWgIR0CWr0/dZaFFdX2UKGgGR0BymupJf6XTaAdNKwFoCEdAlq+H752yLXV9lChoBkdAccqCCjDbamgHTQ8BaAhHQJavmRT0g8t1fZQoaAZHQHFc3TiKiwloB00NAWgIR0CWsE2vStvGdX2UKGgGR0Buha8xsVL0aAdNCAFoCEdAlrB5OWSlnHV9lChoBkdAcbrK0D2alWgHTTUBaAhHQJawuXfIjnp1fZQoaAZHQHI5BPO6d2BoB0v+aAhHQJax1d/rjYJ1fZQoaAZHQHGobNOdoWZoB00DAWgIR0CWslTHKfWddX2UKGgGR0BytAHX2/SIaAdNAwFoCEdAlrKRujynUHV9lChoBkdAbgkLApKBd2gHTRcBaAhHQJa186JZW7x1fZQoaAZHQHDjnoX9BKNoB0v3aAhHQJa5aXfIjnp1fZQoaAZHQHI8IBRyfcxoB00VAWgIR0CWucUO/cnFdX2UKGgGR0Bv5x1xKg7HaAdNDAFoCEdAlrowElme2HV9lChoBkdAcTsSs8xKx2gHTQIBaAhHQJa6kBgeA/d1fZQoaAZHQHAMCuU2UB5oB00fAWgIR0CWuzFgDzRQdX2UKGgGR0BkLS2hIvrXaAdN6ANoCEdAlrsynHeaa3V9lChoBkdAcpNzQeFL4GgHTQwBaAhHQJa7NFa0Qbx1fZQoaAZHQHE4KfJ3gUFoB00AAWgIR0CWvEGgSOBEdX2UKGgGR0BzJIe9zwMIaAdNNQFoCEdAlrynPRiPQ3V9lChoBkdAcOw+Y+jdpWgHTRgBaAhHQJa85UZNwit1fZQoaAZHQG8Z4Fiay8loB00nAWgIR0CWvSxgRbr1dX2UKGgGR0BtUcasIVuaaAdNCAFoCEdAlr4QezUqhHV9lChoBkdAcCGXLvCuU2gHTR8BaAhHQJa+cXrMTvl1fZQoaAZHQHEnd21UlzFoB00VAWgIR0CWvqFERaoudX2UKGgGR0By/dW+49X+aAdNMAFoCEdAlsHVfJFLFnV9lChoBkdAbdkhM8HObGgHS/toCEdAlsLVsHjZMHV9lChoBkdAcXXLGaQV9GgHTQgBaAhHQJbDDPE87p51fZQoaAZHQG1TLwnYxtZoB00SAWgIR0CWwzQ/oq0/dX2UKGgGR0Bs3pSJj2BbaAdNAgFoCEdAlsPAsf7rLXV9lChoBkdAcDrOf/WDpWgHS/1oCEdAlsRwWnCO3nV9lChoBkdAcDv72+PBBWgHTRgBaAhHQJbEjLxI8Qt1fZQoaAZHQG/BofjjrAxoB004AWgIR0CWxULMcIZ7dX2UKGgGR0Bttijafzz3aAdNBQFoCEdAlsWWs/6frnV9lChoBkdAch5A2hqTKWgHTREBaAhHQJbFqVgQYk51fZQoaAZHQHHcx99c8kloB00tAWgIR0CWxk4Qz1sddX2UKGgGR0BgpVGZuyeJaAdN6ANoCEdAlsZsohIOH3V9lChoBkdAcb+HMUypJmgHTQcBaAhHQJbG9BE8aGZ1fZQoaAZHQHFJNPLxI8RoB00nAWgIR0CWx37g88s+dX2UKGgGR0Byj+sGPgejaAdNGgFoCEdAlseopH7P6nV9lChoBkdAb+7K02LpA2gHTQsBaAhHQJbKc0GeMAF1fZQoaAZHQHC4h7iQ1aZoB0v9aAhHQJbK6UnogV51fZQoaAZHQGuy3EAHVwxoB00CAWgIR0CWy2rhBJI2dX2UKGgGR0BuYt4/u9eyaAdNGAFoCEdAlswPQOWjXXV9lChoBkdAcgcFYdQwbmgHS/ZoCEdAlsw6HO8kEHV9lChoBkdAb75m+TNdJWgHTRkBaAhHQJb6gbp/wy91fZQoaAZHQHFVQCjk+5hoB00JAWgIR0CW+reRxLkCdX2UKGgGR0BxI3EtNBWxaAdL/2gIR0CW+wied07sdX2UKGgGR0BwnzQnhKlIaAdL+mgIR0CW+y/RVp9JdX2UKGgGR0Bw+RL39JjEaAdNDQFoCEdAlvyDx9XtB3V9lChoBkdAcNUKfnOjZmgHTRsBaAhHQJb9GHh0heR1fZQoaAZHQHHd5kXk5p9oB0v9aAhHQJb9YlOXVsl1fZQoaAZHQHBm3XqZ+hJoB0v6aAhHQJb9epT/ACZ1fZQoaAZHQHE5aQ3gk1NoB01cAWgIR0CW/9DIikftdX2UKGgGR0BvOxF5OafBaAdNEAFoCEdAlwHmHUMG5nV9lChoBkdAbfMqTbFju2gHTRMBaAhHQJcCoLThHb11fZQoaAZHQHCafqkdmxtoB00CAWgIR0CXAquDSPU8dX2UKGgGR0BzDu2MKkVOaAdL+WgIR0CXAyliz9jxdX2UKGgGR0BupYgJTl1baAdNDgFoCEdAlwQ+GbkOqnV9lChoBkdAcAPAFxGUfWgHTTEBaAhHQJcEyVpsXSB1fZQoaAZHQG3j/KISDh9oB00hAWgIR0CXBW4smOU/dX2UKGgGR0ByvHSH/LkkaAdNNAFoCEdAlwZZ+pfhM3V9lChoBkdAcqs2ZiNKiGgHS/5oCEdAlwacSGrS3XV9lChoBkdAcF0xpL26CmgHTRoBaAhHQJcHBbaAWi11fZQoaAZHQG3h7dznzQNoB0v/aAhHQJcHBiKBNEh1fZQoaAZHQHJoRhpg1FZoB00RAWgIR0CXB8OerdWRdX2UKGgGR0BxCtLxqfvnaAdNFQFoCEdAlwptPDYRNHV9lChoBkdAZCE5VfeDWmgHTegDaAhHQJcLLwF1SwZ1fZQoaAZHQHDLNugpSaVoB0v3aAhHQJcLXn3cpLF1fZQoaAZHQG6osKLKmsNoB0v/aAhHQJcMTvhIe5p1fZQoaAZHQG005QxesxRoB00DAWgIR0CXDH371qWUdX2UKGgGR0Bwi/vw3HaOaAdL/WgIR0CXDaV09yLidX2UKGgGR0BwEw7gbZOBaAdNJAFoCEdAlw4P+n62v3V9lChoBkdAcoMcynDR+mgHTQUBaAhHQJcOXhuO0b91fZQoaAZHQHAmPW+XZ5BoB00CAWgIR0CXD9Tuv2XcdX2UKGgGR0Bw7gNDtw71aAdNKAFoCEdAlxAd+b3GoHV9lChoBkdAcb3tLteD4GgHTRsBaAhHQJcQhwkxASp1fZQoaAZHQHOnRkmQbMpoB00sAWgIR0CXEZT8YQ8PdX2UKGgGR0Bvs3q3VkMDaAdNNQFoCEdAlxHfHo5ggHV9lChoBkdAcFOhP0qYq2gHS/1oCEdAlxQpng5zYHV9lChoBkdAcmSWDpTuOWgHTQ0BaAhHQJcUlQyhzvJ1fZQoaAZHQHAIikTHsC1oB00rAWgIR0CXFP4z7/GVdX2UKGgGR0Ba9CfxtpEhaAdN6ANoCEdAlxYlXiiqQ3V9lChoBkdAb25ZGrjo6mgHTSEBaAhHQJcWZF3IMjN1fZQoaAZHQG8aakIomXxoB0v9aAhHQJcWdmOEM9d1fZQoaAZHQHMOiWu5jH5oB00gAWgIR0CXFoir1dxAdX2UKGgGR0Bw1KetjkMkaAdNFAFoCEdAlxgc2itaIXV9lChoBkdAbXHt7a7EpGgHTSMBaAhHQJcYY7U5MlF1fZQoaAZHQG/jGiQDFIdoB02IA2gIR0CXGKBjFyaNdX2UKGgGR0BwFZLPD50saAdNEQFoCEdAlxmztsvZiHV9lChoBkdAbxaJSBK+SWgHTRIBaAhHQJcaDcZccEN1fZQoaAZHQHETEq+ajN9oB00mAWgIR0CXG0hJiAlOdX2UKGgGR0BwXm8VYZEVaAdNDAFoCEdAlxvkbo8p1HV9lChoBkdAcEoTlT3qRmgHTUABaAhHQJcdrs7dSEV1fZQoaAZHQHAxcUZeiSJoB0v3aAhHQJcdufL9uP51fZQoaAZHQG7B7Lt/nW9oB00DAWgIR0CXHy+yJKradWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}