add PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 260.12 +/- 22.33
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78514ec58040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78514ec580d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78514ec58160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78514ec581f0>", "_build": "<function ActorCriticPolicy._build at 0x78514ec58280>", "forward": "<function ActorCriticPolicy.forward at 0x78514ec58310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78514ec583a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78514ec58430>", "_predict": "<function ActorCriticPolicy._predict at 0x78514ec584c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78514ec58550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78514ec585e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78514ec58670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7850f341be00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736735425499658597, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADo1DsUnI+6zJoNPeGRBj1s86u7cy/kPQAAgD8AAIA/ZmAePhsuiryHSsM8NKI8PaRVbr0aPgi+AACAPwAAgD8zuxK8e9yTulr4NrW8F8SuqGYwO428TjQAAIA/AACAP4Aa2z3SHo27Eq8evkYvBb6fPf85e4iYOwAAgD8AAIA/mr8ovcIfSj6FwNe87iFbvotxVrzCAsk7AAAAAAAAAACAGRq9hu1yP7q8ZTpFI7i+J+5IvXa5yzwAAAAAAAAAAE0sHD6xOvo+YBgpvd8kc74PB8E8rQs0PQAAAAAAAAAAM8uwuxxyOD6Ex0s9zyJOvgVanDydjQ+9AAAAAAAAAADTKkk+9z6MP/qRlj4+gr2+Ru55PktLT70AAAAAAAAAAACyMj1scsA/yxmVPv7e9j3uLCs9GzIEPgAAAAAAAAAA5joBPt92Yj9gYk69Sf62vqnqc7n2Ula9AAAAAAAAAABmBMW89vwnui4SwjIbFWswMZGsO5orirMAAIA/AACAP2Zad73SZSE/gJXRPR3bm76pYQe8YmWRPAAAAAAAAAAAc8umPYXT3bluBJi6tc7QN2xnx7nd+iA5AACAPwAAAADaBdC9h94WPg5WAT4R+zK+jvaOPARiPTwAAAAAAAAAAM0qZjxLTJI+xgiuPRyJab49ltU8GheLvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHL7z6N2ki6MAWyUTcABjAF0lEdAlqua4YrJ83V9lChoBkdAa7ISkCV8kWgHTQUBaAhHQJauUeOn2qV1fZQoaAZHQHDWrPldTpBoB00JAWgIR0CWrvV2A5JcdX2UKGgGR0BxqeXQdCE6aAdNGwFoCEdAlq8AD7qIJ3V9lChoBkdAbJeUEgW8AmgHTQABaAhHQJavPn1WbPR1fZQoaAZHQG8wWFnIyTJoB00JAWgIR0CWr0/dZaFFdX2UKGgGR0BymupJf6XTaAdNKwFoCEdAlq+H752yLXV9lChoBkdAccqCCjDbamgHTQ8BaAhHQJavmRT0g8t1fZQoaAZHQHFc3TiKiwloB00NAWgIR0CWsE2vStvGdX2UKGgGR0Buha8xsVL0aAdNCAFoCEdAlrB5OWSlnHV9lChoBkdAcbrK0D2alWgHTTUBaAhHQJawuXfIjnp1fZQoaAZHQHI5BPO6d2BoB0v+aAhHQJax1d/rjYJ1fZQoaAZHQHGobNOdoWZoB00DAWgIR0CWslTHKfWddX2UKGgGR0BytAHX2/SIaAdNAwFoCEdAlrKRujynUHV9lChoBkdAbgkLApKBd2gHTRcBaAhHQJa186JZW7x1fZQoaAZHQHDjnoX9BKNoB0v3aAhHQJa5aXfIjnp1fZQoaAZHQHI8IBRyfcxoB00VAWgIR0CWucUO/cnFdX2UKGgGR0Bv5x1xKg7HaAdNDAFoCEdAlrowElme2HV9lChoBkdAcTsSs8xKx2gHTQIBaAhHQJa6kBgeA/d1fZQoaAZHQHAMCuU2UB5oB00fAWgIR0CWuzFgDzRQdX2UKGgGR0BkLS2hIvrXaAdN6ANoCEdAlrsynHeaa3V9lChoBkdAcpNzQeFL4GgHTQwBaAhHQJa7NFa0Qbx1fZQoaAZHQHE4KfJ3gUFoB00AAWgIR0CWvEGgSOBEdX2UKGgGR0BzJIe9zwMIaAdNNQFoCEdAlrynPRiPQ3V9lChoBkdAcOw+Y+jdpWgHTRgBaAhHQJa85UZNwit1fZQoaAZHQG8Z4Fiay8loB00nAWgIR0CWvSxgRbr1dX2UKGgGR0BtUcasIVuaaAdNCAFoCEdAlr4QezUqhHV9lChoBkdAcCGXLvCuU2gHTR8BaAhHQJa+cXrMTvl1fZQoaAZHQHEnd21UlzFoB00VAWgIR0CWvqFERaoudX2UKGgGR0By/dW+49X+aAdNMAFoCEdAlsHVfJFLFnV9lChoBkdAbdkhM8HObGgHS/toCEdAlsLVsHjZMHV9lChoBkdAcXXLGaQV9GgHTQgBaAhHQJbDDPE87p51fZQoaAZHQG1TLwnYxtZoB00SAWgIR0CWwzQ/oq0/dX2UKGgGR0Bs3pSJj2BbaAdNAgFoCEdAlsPAsf7rLXV9lChoBkdAcDrOf/WDpWgHS/1oCEdAlsRwWnCO3nV9lChoBkdAcDv72+PBBWgHTRgBaAhHQJbEjLxI8Qt1fZQoaAZHQG/BofjjrAxoB004AWgIR0CWxULMcIZ7dX2UKGgGR0Bttijafzz3aAdNBQFoCEdAlsWWs/6frnV9lChoBkdAch5A2hqTKWgHTREBaAhHQJbFqVgQYk51fZQoaAZHQHHcx99c8kloB00tAWgIR0CWxk4Qz1sddX2UKGgGR0BgpVGZuyeJaAdN6ANoCEdAlsZsohIOH3V9lChoBkdAcb+HMUypJmgHTQcBaAhHQJbG9BE8aGZ1fZQoaAZHQHFJNPLxI8RoB00nAWgIR0CWx37g88s+dX2UKGgGR0Byj+sGPgejaAdNGgFoCEdAlseopH7P6nV9lChoBkdAb+7K02LpA2gHTQsBaAhHQJbKc0GeMAF1fZQoaAZHQHC4h7iQ1aZoB0v9aAhHQJbK6UnogV51fZQoaAZHQGuy3EAHVwxoB00CAWgIR0CWy2rhBJI2dX2UKGgGR0BuYt4/u9eyaAdNGAFoCEdAlswPQOWjXXV9lChoBkdAcgcFYdQwbmgHS/ZoCEdAlsw6HO8kEHV9lChoBkdAb75m+TNdJWgHTRkBaAhHQJb6gbp/wy91fZQoaAZHQHFVQCjk+5hoB00JAWgIR0CW+reRxLkCdX2UKGgGR0BxI3EtNBWxaAdL/2gIR0CW+wied07sdX2UKGgGR0BwnzQnhKlIaAdL+mgIR0CW+y/RVp9JdX2UKGgGR0Bw+RL39JjEaAdNDQFoCEdAlvyDx9XtB3V9lChoBkdAcNUKfnOjZmgHTRsBaAhHQJb9GHh0heR1fZQoaAZHQHHd5kXk5p9oB0v9aAhHQJb9YlOXVsl1fZQoaAZHQHBm3XqZ+hJoB0v6aAhHQJb9epT/ACZ1fZQoaAZHQHE5aQ3gk1NoB01cAWgIR0CW/9DIikftdX2UKGgGR0BvOxF5OafBaAdNEAFoCEdAlwHmHUMG5nV9lChoBkdAbfMqTbFju2gHTRMBaAhHQJcCoLThHb11fZQoaAZHQHCafqkdmxtoB00CAWgIR0CXAquDSPU8dX2UKGgGR0BzDu2MKkVOaAdL+WgIR0CXAyliz9jxdX2UKGgGR0BupYgJTl1baAdNDgFoCEdAlwQ+GbkOqnV9lChoBkdAcAPAFxGUfWgHTTEBaAhHQJcEyVpsXSB1fZQoaAZHQG3j/KISDh9oB00hAWgIR0CXBW4smOU/dX2UKGgGR0ByvHSH/LkkaAdNNAFoCEdAlwZZ+pfhM3V9lChoBkdAcqs2ZiNKiGgHS/5oCEdAlwacSGrS3XV9lChoBkdAcF0xpL26CmgHTRoBaAhHQJcHBbaAWi11fZQoaAZHQG3h7dznzQNoB0v/aAhHQJcHBiKBNEh1fZQoaAZHQHJoRhpg1FZoB00RAWgIR0CXB8OerdWRdX2UKGgGR0BxCtLxqfvnaAdNFQFoCEdAlwptPDYRNHV9lChoBkdAZCE5VfeDWmgHTegDaAhHQJcLLwF1SwZ1fZQoaAZHQHDLNugpSaVoB0v3aAhHQJcLXn3cpLF1fZQoaAZHQG6osKLKmsNoB0v/aAhHQJcMTvhIe5p1fZQoaAZHQG005QxesxRoB00DAWgIR0CXDH371qWUdX2UKGgGR0Bwi/vw3HaOaAdL/WgIR0CXDaV09yLidX2UKGgGR0BwEw7gbZOBaAdNJAFoCEdAlw4P+n62v3V9lChoBkdAcoMcynDR+mgHTQUBaAhHQJcOXhuO0b91fZQoaAZHQHAmPW+XZ5BoB00CAWgIR0CXD9Tuv2XcdX2UKGgGR0Bw7gNDtw71aAdNKAFoCEdAlxAd+b3GoHV9lChoBkdAcb3tLteD4GgHTRsBaAhHQJcQhwkxASp1fZQoaAZHQHOnRkmQbMpoB00sAWgIR0CXEZT8YQ8PdX2UKGgGR0Bvs3q3VkMDaAdNNQFoCEdAlxHfHo5ggHV9lChoBkdAcFOhP0qYq2gHS/1oCEdAlxQpng5zYHV9lChoBkdAcmSWDpTuOWgHTQ0BaAhHQJcUlQyhzvJ1fZQoaAZHQHAIikTHsC1oB00rAWgIR0CXFP4z7/GVdX2UKGgGR0Ba9CfxtpEhaAdN6ANoCEdAlxYlXiiqQ3V9lChoBkdAb25ZGrjo6mgHTSEBaAhHQJcWZF3IMjN1fZQoaAZHQG8aakIomXxoB0v9aAhHQJcWdmOEM9d1fZQoaAZHQHMOiWu5jH5oB00gAWgIR0CXFoir1dxAdX2UKGgGR0Bw1KetjkMkaAdNFAFoCEdAlxgc2itaIXV9lChoBkdAbXHt7a7EpGgHTSMBaAhHQJcYY7U5MlF1fZQoaAZHQG/jGiQDFIdoB02IA2gIR0CXGKBjFyaNdX2UKGgGR0BwFZLPD50saAdNEQFoCEdAlxmztsvZiHV9lChoBkdAbxaJSBK+SWgHTRIBaAhHQJcaDcZccEN1fZQoaAZHQHETEq+ajN9oB00mAWgIR0CXG0hJiAlOdX2UKGgGR0BwXm8VYZEVaAdNDAFoCEdAlxvkbo8p1HV9lChoBkdAcEoTlT3qRmgHTUABaAhHQJcdrs7dSEV1fZQoaAZHQHAxcUZeiSJoB0v3aAhHQJcdufL9uP51fZQoaAZHQG7B7Lt/nW9oB00DAWgIR0CXHy+yJKradWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c692b348cc2217ada7f62d5c46c8071a058b8edd4ebdfbdefcddaf674c0f40f0
|
3 |
+
size 147995
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78514ec58040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78514ec580d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78514ec58160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78514ec581f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78514ec58280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78514ec58310>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78514ec583a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78514ec58430>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78514ec584c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78514ec58550>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78514ec585e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78514ec58670>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7850f341be00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1736735425499658597,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADo1DsUnI+6zJoNPeGRBj1s86u7cy/kPQAAgD8AAIA/ZmAePhsuiryHSsM8NKI8PaRVbr0aPgi+AACAPwAAgD8zuxK8e9yTulr4NrW8F8SuqGYwO428TjQAAIA/AACAP4Aa2z3SHo27Eq8evkYvBb6fPf85e4iYOwAAgD8AAIA/mr8ovcIfSj6FwNe87iFbvotxVrzCAsk7AAAAAAAAAACAGRq9hu1yP7q8ZTpFI7i+J+5IvXa5yzwAAAAAAAAAAE0sHD6xOvo+YBgpvd8kc74PB8E8rQs0PQAAAAAAAAAAM8uwuxxyOD6Ex0s9zyJOvgVanDydjQ+9AAAAAAAAAADTKkk+9z6MP/qRlj4+gr2+Ru55PktLT70AAAAAAAAAAACyMj1scsA/yxmVPv7e9j3uLCs9GzIEPgAAAAAAAAAA5joBPt92Yj9gYk69Sf62vqnqc7n2Ula9AAAAAAAAAABmBMW89vwnui4SwjIbFWswMZGsO5orirMAAIA/AACAP2Zad73SZSE/gJXRPR3bm76pYQe8YmWRPAAAAAAAAAAAc8umPYXT3bluBJi6tc7QN2xnx7nd+iA5AACAPwAAAADaBdC9h94WPg5WAT4R+zK+jvaOPARiPTwAAAAAAAAAAM0qZjxLTJI+xgiuPRyJab49ltU8GheLvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHL7z6N2ki6MAWyUTcABjAF0lEdAlqua4YrJ83V9lChoBkdAa7ISkCV8kWgHTQUBaAhHQJauUeOn2qV1fZQoaAZHQHDWrPldTpBoB00JAWgIR0CWrvV2A5JcdX2UKGgGR0BxqeXQdCE6aAdNGwFoCEdAlq8AD7qIJ3V9lChoBkdAbJeUEgW8AmgHTQABaAhHQJavPn1WbPR1fZQoaAZHQG8wWFnIyTJoB00JAWgIR0CWr0/dZaFFdX2UKGgGR0BymupJf6XTaAdNKwFoCEdAlq+H752yLXV9lChoBkdAccqCCjDbamgHTQ8BaAhHQJavmRT0g8t1fZQoaAZHQHFc3TiKiwloB00NAWgIR0CWsE2vStvGdX2UKGgGR0Buha8xsVL0aAdNCAFoCEdAlrB5OWSlnHV9lChoBkdAcbrK0D2alWgHTTUBaAhHQJawuXfIjnp1fZQoaAZHQHI5BPO6d2BoB0v+aAhHQJax1d/rjYJ1fZQoaAZHQHGobNOdoWZoB00DAWgIR0CWslTHKfWddX2UKGgGR0BytAHX2/SIaAdNAwFoCEdAlrKRujynUHV9lChoBkdAbgkLApKBd2gHTRcBaAhHQJa186JZW7x1fZQoaAZHQHDjnoX9BKNoB0v3aAhHQJa5aXfIjnp1fZQoaAZHQHI8IBRyfcxoB00VAWgIR0CWucUO/cnFdX2UKGgGR0Bv5x1xKg7HaAdNDAFoCEdAlrowElme2HV9lChoBkdAcTsSs8xKx2gHTQIBaAhHQJa6kBgeA/d1fZQoaAZHQHAMCuU2UB5oB00fAWgIR0CWuzFgDzRQdX2UKGgGR0BkLS2hIvrXaAdN6ANoCEdAlrsynHeaa3V9lChoBkdAcpNzQeFL4GgHTQwBaAhHQJa7NFa0Qbx1fZQoaAZHQHE4KfJ3gUFoB00AAWgIR0CWvEGgSOBEdX2UKGgGR0BzJIe9zwMIaAdNNQFoCEdAlrynPRiPQ3V9lChoBkdAcOw+Y+jdpWgHTRgBaAhHQJa85UZNwit1fZQoaAZHQG8Z4Fiay8loB00nAWgIR0CWvSxgRbr1dX2UKGgGR0BtUcasIVuaaAdNCAFoCEdAlr4QezUqhHV9lChoBkdAcCGXLvCuU2gHTR8BaAhHQJa+cXrMTvl1fZQoaAZHQHEnd21UlzFoB00VAWgIR0CWvqFERaoudX2UKGgGR0By/dW+49X+aAdNMAFoCEdAlsHVfJFLFnV9lChoBkdAbdkhM8HObGgHS/toCEdAlsLVsHjZMHV9lChoBkdAcXXLGaQV9GgHTQgBaAhHQJbDDPE87p51fZQoaAZHQG1TLwnYxtZoB00SAWgIR0CWwzQ/oq0/dX2UKGgGR0Bs3pSJj2BbaAdNAgFoCEdAlsPAsf7rLXV9lChoBkdAcDrOf/WDpWgHS/1oCEdAlsRwWnCO3nV9lChoBkdAcDv72+PBBWgHTRgBaAhHQJbEjLxI8Qt1fZQoaAZHQG/BofjjrAxoB004AWgIR0CWxULMcIZ7dX2UKGgGR0Bttijafzz3aAdNBQFoCEdAlsWWs/6frnV9lChoBkdAch5A2hqTKWgHTREBaAhHQJbFqVgQYk51fZQoaAZHQHHcx99c8kloB00tAWgIR0CWxk4Qz1sddX2UKGgGR0BgpVGZuyeJaAdN6ANoCEdAlsZsohIOH3V9lChoBkdAcb+HMUypJmgHTQcBaAhHQJbG9BE8aGZ1fZQoaAZHQHFJNPLxI8RoB00nAWgIR0CWx37g88s+dX2UKGgGR0Byj+sGPgejaAdNGgFoCEdAlseopH7P6nV9lChoBkdAb+7K02LpA2gHTQsBaAhHQJbKc0GeMAF1fZQoaAZHQHC4h7iQ1aZoB0v9aAhHQJbK6UnogV51fZQoaAZHQGuy3EAHVwxoB00CAWgIR0CWy2rhBJI2dX2UKGgGR0BuYt4/u9eyaAdNGAFoCEdAlswPQOWjXXV9lChoBkdAcgcFYdQwbmgHS/ZoCEdAlsw6HO8kEHV9lChoBkdAb75m+TNdJWgHTRkBaAhHQJb6gbp/wy91fZQoaAZHQHFVQCjk+5hoB00JAWgIR0CW+reRxLkCdX2UKGgGR0BxI3EtNBWxaAdL/2gIR0CW+wied07sdX2UKGgGR0BwnzQnhKlIaAdL+mgIR0CW+y/RVp9JdX2UKGgGR0Bw+RL39JjEaAdNDQFoCEdAlvyDx9XtB3V9lChoBkdAcNUKfnOjZmgHTRsBaAhHQJb9GHh0heR1fZQoaAZHQHHd5kXk5p9oB0v9aAhHQJb9YlOXVsl1fZQoaAZHQHBm3XqZ+hJoB0v6aAhHQJb9epT/ACZ1fZQoaAZHQHE5aQ3gk1NoB01cAWgIR0CW/9DIikftdX2UKGgGR0BvOxF5OafBaAdNEAFoCEdAlwHmHUMG5nV9lChoBkdAbfMqTbFju2gHTRMBaAhHQJcCoLThHb11fZQoaAZHQHCafqkdmxtoB00CAWgIR0CXAquDSPU8dX2UKGgGR0BzDu2MKkVOaAdL+WgIR0CXAyliz9jxdX2UKGgGR0BupYgJTl1baAdNDgFoCEdAlwQ+GbkOqnV9lChoBkdAcAPAFxGUfWgHTTEBaAhHQJcEyVpsXSB1fZQoaAZHQG3j/KISDh9oB00hAWgIR0CXBW4smOU/dX2UKGgGR0ByvHSH/LkkaAdNNAFoCEdAlwZZ+pfhM3V9lChoBkdAcqs2ZiNKiGgHS/5oCEdAlwacSGrS3XV9lChoBkdAcF0xpL26CmgHTRoBaAhHQJcHBbaAWi11fZQoaAZHQG3h7dznzQNoB0v/aAhHQJcHBiKBNEh1fZQoaAZHQHJoRhpg1FZoB00RAWgIR0CXB8OerdWRdX2UKGgGR0BxCtLxqfvnaAdNFQFoCEdAlwptPDYRNHV9lChoBkdAZCE5VfeDWmgHTegDaAhHQJcLLwF1SwZ1fZQoaAZHQHDLNugpSaVoB0v3aAhHQJcLXn3cpLF1fZQoaAZHQG6osKLKmsNoB0v/aAhHQJcMTvhIe5p1fZQoaAZHQG005QxesxRoB00DAWgIR0CXDH371qWUdX2UKGgGR0Bwi/vw3HaOaAdL/WgIR0CXDaV09yLidX2UKGgGR0BwEw7gbZOBaAdNJAFoCEdAlw4P+n62v3V9lChoBkdAcoMcynDR+mgHTQUBaAhHQJcOXhuO0b91fZQoaAZHQHAmPW+XZ5BoB00CAWgIR0CXD9Tuv2XcdX2UKGgGR0Bw7gNDtw71aAdNKAFoCEdAlxAd+b3GoHV9lChoBkdAcb3tLteD4GgHTRsBaAhHQJcQhwkxASp1fZQoaAZHQHOnRkmQbMpoB00sAWgIR0CXEZT8YQ8PdX2UKGgGR0Bvs3q3VkMDaAdNNQFoCEdAlxHfHo5ggHV9lChoBkdAcFOhP0qYq2gHS/1oCEdAlxQpng5zYHV9lChoBkdAcmSWDpTuOWgHTQ0BaAhHQJcUlQyhzvJ1fZQoaAZHQHAIikTHsC1oB00rAWgIR0CXFP4z7/GVdX2UKGgGR0Ba9CfxtpEhaAdN6ANoCEdAlxYlXiiqQ3V9lChoBkdAb25ZGrjo6mgHTSEBaAhHQJcWZF3IMjN1fZQoaAZHQG8aakIomXxoB0v9aAhHQJcWdmOEM9d1fZQoaAZHQHMOiWu5jH5oB00gAWgIR0CXFoir1dxAdX2UKGgGR0Bw1KetjkMkaAdNFAFoCEdAlxgc2itaIXV9lChoBkdAbXHt7a7EpGgHTSMBaAhHQJcYY7U5MlF1fZQoaAZHQG/jGiQDFIdoB02IA2gIR0CXGKBjFyaNdX2UKGgGR0BwFZLPD50saAdNEQFoCEdAlxmztsvZiHV9lChoBkdAbxaJSBK+SWgHTRIBaAhHQJcaDcZccEN1fZQoaAZHQHETEq+ajN9oB00mAWgIR0CXG0hJiAlOdX2UKGgGR0BwXm8VYZEVaAdNDAFoCEdAlxvkbo8p1HV9lChoBkdAcEoTlT3qRmgHTUABaAhHQJcdrs7dSEV1fZQoaAZHQHAxcUZeiSJoB0v3aAhHQJcdufL9uP51fZQoaAZHQG7B7Lt/nW9oB00DAWgIR0CXHy+yJKradWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 620,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51e32a753acb568a611f927e9533dcd7955876472bda13723f3690352fd0bc51
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb5af04bf79ae40f233c508a82b9b6ed7897ff597c699823db18e5d22ac6666b
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (189 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.1174598, "std_reward": 22.3271155972186, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-13T03:15:07.434999"}
|