abhinand's picture
Adding Evaluation Results (#1)
b30de9b verified
---
language:
- en
license: apache-2.0
datasets:
- teknium/OpenHermes-2.5
- abhinand/ultrachat_200k_sharegpt
model-index:
- name: TinyLlama-1.1B-OpenHermes-2.5-Chat-v0.1-sft
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 33.79
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/TinyLlama-1.1B-OpenHermes-2.5-Chat-v0.1-sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 58.72
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/TinyLlama-1.1B-OpenHermes-2.5-Chat-v0.1-sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 24.52
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/TinyLlama-1.1B-OpenHermes-2.5-Chat-v0.1-sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 36.22
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/TinyLlama-1.1B-OpenHermes-2.5-Chat-v0.1-sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.93
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/TinyLlama-1.1B-OpenHermes-2.5-Chat-v0.1-sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 5.38
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/TinyLlama-1.1B-OpenHermes-2.5-Chat-v0.1-sft
name: Open LLM Leaderboard
---
# TinyLLaMA OpenHermes2.5 [Work in Progress]
This a finetune of TinyLLaMA base model finetuned on [OpenHermes 2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5) and [UltraChat 200k](https://huggingface.co/datasets/abhinand/ultrachat_200k_sharegpt) for a single epoch.
Training was generously supported by [Jarvislabs.ai](https://jarvislabs.ai/).
If you appreciate this work and would like to support its continued development, consider [buying me a coffee](https://www.buymeacoffee.com/abhinand.b). Your support is invaluable and greatly appreciated.
[!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/abhinand.b)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
is_llama_derived_model: true
# huggingface repo
datasets:
- path: teknium/OpenHermes-2.5
type: sharegpt
conversation: chatml
train_on_split: train
- path: abhinand/ultrachat_200k_sharegpt
type: sharegpt
conversation: chatml
train_on_split: train
load_in_4bit: false
load_in_8bit: false
bf16: true # require >=ampere
chat_template: chatml
dataset_prepared_path: last_run_prepared_path
hub_model_id: abhinand/TinyLlama-1.1B-OpenHermes-2.5-Chat-v1.0
group_by_length: false
val_set_size: 0.0
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lora_modules_to_save:
- embed_tokens
- lm_head
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
output_dir: /home/tiny-llama/trained_models
gradient_accumulation_steps: 2
micro_batch_size: 32
eval_batch_size: 32
num_epochs: 1
logging_steps: 1
save_steps: 50
save_total_limit: 3
save_safetensors: true
gradient_checkpointing: true
lr_scheduler: cosine
optimizer: "adamw_bnb_8bit"
adam_beta2: 0.95
adam_epsilon: 0.00001
weight_decay: 0.1
learning_rate: 0.0005
max_grad_norm: 1.0
warmup_ratio: 0.05
# warmup_steps: 100
flash_attention: true
# Resume from a specific checkpoint dir
resume_from_checkpoint:
# If resume_from_checkpoint isn't set and you simply want it to start where it left off.
# Be careful with this being turned on between different models.
# auto_resume_from_checkpoints: true
# wandb configuration if you're using it
# Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`.
wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb
wandb_project: "tiny-llama-sft"
wandb_name:
wandb_run_id:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
tokens: # these are delimiters
- "<|im_start|>"
- "<|im_end|>"
```
</details>
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 476
- num_epochs: 1
### Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.0.1
- Datasets 2.16.1
- Tokenizers 0.15.0
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abhinand__TinyLlama-1.1B-OpenHermes-2.5-Chat-v0.1-sft)
| Metric |Value|
|---------------------------------|----:|
|Avg. |36.59|
|AI2 Reasoning Challenge (25-Shot)|33.79|
|HellaSwag (10-Shot) |58.72|
|MMLU (5-Shot) |24.52|
|TruthfulQA (0-shot) |36.22|
|Winogrande (5-shot) |60.93|
|GSM8k (5-shot) | 5.38|