SetFit with BAAI/bge-small-en-v1.5

This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1
  • 'board diversity affects ceo pay'
  • 'perceptions of formal learning affects entrepreneurship intention'
  • 'proactiveness affects entrepreneurship intention'
0
  • 'sales and takeovers affects entrepreneurship intention'
  • 'uk affects entrepreneurship intention'
  • 'economics affects entrepreneurship intention'

Evaluation

Metrics

Label Accuracy
all 0.9059

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("abehandlerorg/setfit")
# Run inference
preds = model("sales affects ceo pay")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 5.4307 12
Label Training Sample Count
0 168
1 171

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0006 1 0.3133 -
0.0277 50 0.289 -
0.0553 100 0.2506 -
0.0830 150 0.2243 -
0.1107 200 0.2388 -
0.1384 250 0.2084 -
0.1660 300 0.1316 -
0.1937 350 0.0142 -
0.2214 400 0.0065 -
0.2490 450 0.0037 -
0.2767 500 0.003 -
0.3044 550 0.002 -
0.3320 600 0.0018 -
0.3597 650 0.0026 -
0.3874 700 0.0013 -
0.4151 750 0.0012 -
0.4427 800 0.0284 -
0.4704 850 0.0145 -
0.4981 900 0.0053 -
0.5257 950 0.0075 -
0.5534 1000 0.005 -
0.5811 1050 0.0008 -
0.6087 1100 0.0008 -
0.6364 1150 0.0008 -
0.6641 1200 0.0007 -
0.6918 1250 0.0008 -
0.7194 1300 0.0009 -
0.7471 1350 0.0007 -
0.7748 1400 0.0008 -
0.8024 1450 0.0006 -
0.8301 1500 0.0006 -
0.8578 1550 0.0192 -
0.8854 1600 0.0005 -
0.9131 1650 0.002 -
0.9408 1700 0.0204 -
0.9685 1750 0.0039 -
0.9961 1800 0.0007 -
1.0238 1850 0.0005 -
1.0515 1900 0.0004 -
1.0791 1950 0.0005 -
1.1068 2000 0.0006 -
1.1345 2050 0.0004 -
1.1621 2100 0.0006 -
1.1898 2150 0.0004 -
1.2175 2200 0.0004 -
1.2452 2250 0.0018 -
1.2728 2300 0.0041 -
1.3005 2350 0.0004 -
1.3282 2400 0.0107 -
1.3558 2450 0.0005 -
1.3835 2500 0.0004 -
1.4112 2550 0.0004 -
1.4388 2600 0.0167 -
1.4665 2650 0.0068 -
1.4942 2700 0.0004 -
1.5219 2750 0.0064 -
1.5495 2800 0.0041 -
1.5772 2850 0.0004 -
1.6049 2900 0.0003 -
1.6325 2950 0.0004 -
1.6602 3000 0.0004 -
1.6879 3050 0.0003 -
1.7156 3100 0.0057 -
1.7432 3150 0.0044 -
1.7709 3200 0.0004 -
1.7986 3250 0.0166 -
1.8262 3300 0.0004 -
1.8539 3350 0.0032 -
1.8816 3400 0.0133 -
1.9092 3450 0.0003 -
1.9369 3500 0.0003 -
1.9646 3550 0.0052 -
1.9923 3600 0.0004 -
2.0199 3650 0.004 -
2.0476 3700 0.0003 -
2.0753 3750 0.0054 -
2.1029 3800 0.0057 -
2.1306 3850 0.0004 -
2.1583 3900 0.0272 -
2.1859 3950 0.0003 -
2.2136 4000 0.006 -
2.2413 4050 0.0044 -
2.2690 4100 0.0003 -
2.2966 4150 0.0167 -
2.3243 4200 0.0048 -
2.3520 4250 0.0086 -
2.3796 4300 0.0051 -
2.4073 4350 0.0003 -
2.4350 4400 0.0037 -
2.4626 4450 0.0003 -
2.4903 4500 0.0021 -
2.5180 4550 0.0003 -
2.5457 4600 0.004 -
2.5733 4650 0.0025 -
2.6010 4700 0.0003 -
2.6287 4750 0.0003 -
2.6563 4800 0.0003 -
2.6840 4850 0.0031 -
2.7117 4900 0.0168 -
2.7393 4950 0.0019 -
2.7670 5000 0.004 -
2.7947 5050 0.0003 -
2.8224 5100 0.0003 -
2.8500 5150 0.003 -
2.8777 5200 0.0003 -
2.9054 5250 0.0003 -
2.9330 5300 0.0171 -
2.9607 5350 0.0003 -
2.9884 5400 0.0162 -
3.0160 5450 0.0143 -
3.0437 5500 0.0134 -
3.0714 5550 0.0133 -
3.0991 5600 0.0003 -
3.1267 5650 0.0003 -
3.1544 5700 0.0093 -
3.1821 5750 0.0003 -
3.2097 5800 0.0003 -
3.2374 5850 0.0003 -
3.2651 5900 0.0003 -
3.2928 5950 0.0003 -
3.3204 6000 0.0029 -
3.3481 6050 0.0126 -
3.3758 6100 0.0003 -
3.4034 6150 0.0002 -
3.4311 6200 0.0003 -
3.4588 6250 0.0062 -
3.4864 6300 0.0002 -
3.5141 6350 0.0002 -
3.5418 6400 0.0003 -
3.5695 6450 0.0002 -
3.5971 6500 0.0041 -
3.6248 6550 0.0465 -
3.6525 6600 0.0148 -
3.6801 6650 0.0181 -
3.7078 6700 0.0037 -
3.7355 6750 0.0002 -
3.7631 6800 0.0003 -
3.7908 6850 0.0003 -
3.8185 6900 0.0034 -
3.8462 6950 0.0002 -
3.8738 7000 0.0148 -
3.9015 7050 0.0002 -
3.9292 7100 0.0003 -
3.9568 7150 0.0002 -
3.9845 7200 0.0003 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 2.7.0
  • Transformers: 4.40.1
  • PyTorch: 2.2.1+cu121
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
20
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for abehandlerorg/setfit

Finetuned
(138)
this model

Evaluation results