2d_psn_800

This model is a fine-tuned version of bert-base-uncased on the ComNum dataset. This model used 800 samples as training, 200 as validation, and 1200 as test on three epochs. It achieves the following results on the evaluation set:

  • Loss: 0.3548
  • Accuracy: 0.765

This model achieves the following results on the test set:

  • Loss: 0.3519
  • Accuracy: 0.7494

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 100 0.3581 0.765
No log 2.0 200 0.3559 0.765
No log 3.0 300 0.3548 0.765

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
26
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for abbassix/2d_psn_800

Finetuned
(2356)
this model