AraElectra for Question Answering on Arabic-SQuADv2
This is the AraElectra model, fine-tuned using the Arabic-SQuADv2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering. with help of AraElectra Classifier to predicted unanswerable question.
Overview
Language model: AraElectra
Language: Arabic
Downstream-task: Extractive QA
Training data: Arabic-SQuADv2.0
Eval data: Arabic-SQuADv2.0
Test data: Arabic-SQuADv2.0
Code: See More Info on Github
Infrastructure: 1x Tesla K80
Hyperparameters
batch_size = 8
n_epochs = 4
base_LM_model = "AraElectra"
learning_rate = 3e-5
optimizer = AdamW
padding = dynamic
Online Demo on Arabic Wikipedia and User Provided Contexts
See model in action hosted on streamlit
Usage
For best results use the AraBert preprocessor by aub-mind
from transformers import ElectraForQuestionAnswering, ElectraForSequenceClassification, AutoTokenizer, pipeline
from preprocess import ArabertPreprocessor
prep_object = ArabertPreprocessor("araelectra-base-discriminator")
question = prep_object('ู
ุง ูู ุฌุงู
ุนุฉ ุงูุฏูู ุงูุนุฑุจูุฉ ุ')
context = prep_object('''
ุฌุงู
ุนุฉ ุงูุฏูู ุงูุนุฑุจูุฉ ููู
ูุธู
ุฉ ุฅูููู
ูุฉ ุชุถู
ุฏููุงู ุนุฑุจูุฉ ูู ุขุณูุง ูุฃูุฑูููุง.
ููุต ู
ูุซุงููุง ุนูู ุงูุชูุณูู ุจูู ุงูุฏูู ุงูุฃุนุถุงุก ูู ุงูุดุคูู ุงูุงูุชุตุงุฏูุฉุ ูู
ู ุถู
ููุง ุงูุนูุงูุงุช ุงูุชุฌุงุฑูุฉ ุงูุงุชุตุงูุงุชุ ุงูุนูุงูุงุช ุงูุซูุงููุฉุ ุงูุฌูุณูุงุช ููุซุงุฆู ูุฃุฐููุงุช ุงูุณูุฑ ูุงูุนูุงูุงุช ุงูุงุฌุชู
ุงุนูุฉ ูุงูุตุญุฉ. ุงูู
ูุฑ ุงูุฏุงุฆู
ูุฌุงู
ุนุฉ ุงูุฏูู ุงูุนุฑุจูุฉ ููุน ูู ุงููุงูุฑุฉุ ุนุงุตู
ุฉ ู
ุตุฑ (ุชููุณ ู
ู 1979 ุฅูู 1990).
''')
# a) Get predictions
qa_modelname = 'ZeyadAhmed/AraElectra-Arabic-SQuADv2-QA'
cls_modelname = 'ZeyadAhmed/AraElectra-Arabic-SQuADv2-CLS'
qa_pipe = pipeline('question-answering', model=qa_modelname, tokenizer=qa_modelname)
QA_input = {
'question': question,
'context': context
}
CLS_input = {
'text': question,
'text_pair': context
}
qa_res = qa_pipe(QA_input)
cls_res = cls_pipe(CLS_iput)
threshold = 0.5 #hyperparameter can be tweaked
## note classification results label0 probability it can be answered label1 probability can't be answered
## if label1 probability > threshold then consider the output of qa_res is empty string else take the qa_res
# b) Load model & tokenizer
qa_model = ElectraForQuestionAnswering.from_pretrained(qa_modelname)
cls_model = ElectraForSequenceClassification.from_pretrained(cls_modelname)
tokenizer = AutoTokenizer.from_pretrained(qa_modelname)
Performance
Evaluated on the Arabic-SQuAD 2.0 test set with the official eval script except changing in the preprocessing a little to fit the arabic language the modified eval script.
"exact": 65.11555277951281,
"f1": 71.49042547237256,,
"total": 9606,
"HasAns_exact": 56.14535768645358,
"HasAns_f1": 67.79623803036668,
"HasAns_total": 5256,
"NoAns_exact": 75.95402298850574,
"NoAns_f1": 75.95402298850574,
"NoAns_total": 4350
- Downloads last month
- 402