Text Generation
Transformers
Safetensors
Japanese
English
llama
conversational
text-generation-inference
Inference Endpoints

Model Card for Model ID

This is Full Parameter Fine Tuned model based on llm-jp/llm-jp-3-13B. See the base details here.

Made for the task of elyza-tasks-100-TV which Matsuo Lab made in a class.

Model Details

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: Yuto-24
  • Model type: Text Generation
  • Language(s) (NLP): Japanese, English
  • License: CC-BY-4.0
  • Finetuned from model: llm-jp/llm-jp-3-13B

Model Sources [optional]

  • Repository: coming soon...

Uses

Direct Use

numpy
torch>=2.3.0
datasets
transformers>=4.40.1
accelerate>=0.29.3
flash-attn>=2.5.8
FlagEmbedding
import torch
import numpy as np

from datasets import Dataset, load_dataset
from FlagEmbedding import BGEM3FlagModel
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextStreamer,
    BitsAndBytesConfig,
)

elyza_tasks_datasets = load_dataset("elyza/ELYZA-tasks-100")

model = BGEM3FlagModel("BAAI/bge-m3")
target_texts = elyza_tasks_datasets["test"]["input"].copy()
target_embeds = model.encode(target_texts)["dense_vecs"]


def retrieve(input_text):
    global target_embeds

    input_texts = [input_text]
    input_embeds = model.encode(input_texts)["dense_vecs"]

    # 類似度の計算
    similarity = input_embeds @ target_embeds.T
    most_similar_text = target_texts[np.argmax(similarity)]

    target_index = target_texts.index(most_similar_text)
    return target_index


class CallLLM:
    def __init__(self, model_name_or_path: str) -> None:
        self.quantization_config = BitsAndBytesConfig(load_in_8bit=True)
        self.model = AutoModelForCausalLM.from_pretrained(
            model_name_or_path,
            quantization_config=self.quantization_config,
            trust_remote_code=True,
            device_map="auto",
        ).eval()
        self.tokenizer = AutoTokenizer.from_pretrained(
            model_name_or_path,
            trust_remote_code=True,
        )
        self.streamer = TextStreamer(
            self.tokenizer,
        )
        self.call_type = None
        print(f"{self.model.device = }")

    def __call__(self, input_text: str, call_type: str = None, stream=False, **kwargs):
        self.call_type = call_type
        # print(f"Using call_type: {self.call_type}")

        call_type_dict = {
            "chat_template": self.__call_chat_template,
        }

        if self.call_type not in call_type_dict.keys():
            raise ValueError(
                f"Please set the call_type. You can select from {call_type_dict.keys()}"
            )
        output = call_type_dict[call_type](input_text.strip(), stream=stream, **kwargs)
        return output

    def merge_adapter(self, lora_adapter_path):
        # PEFTモデルとしてLoRAアダプターをベースモデルに結合
        self.model = PeftModel.from_pretrained(self.model, lora_adapter_path)
        self.model = self.model.merge_and_unload()

    def __call_chat_template(self, input_text: str = "", system_prompt: str = "あなたは、大塚商会の誠実で優秀なアシスタントです。", ** kwargs):
        prompt = []
        if system_prompt and system_prompt != "":
            prompt.append({"role": "system", "content": system_prompt})
        if input_text and input_text != "":
            prompt.append({"role": "user", "content": input_text})

        tokenized_input = self.tokenizer.apply_chat_template(
            prompt,
            return_tensors="pt",
        )

        output = self.__inference(tokenized_input, **kwargs)
        return output

        output = self.__inference(tokenized_input, **kwargs)
        return output

    def __inference(self, tokenized_input, stream: bool, **kwargs):
        tokenized_input = tokenized_input.to(self.model.device)
        attention_mask = torch.ones_like(tokenized_input)

        default_inference_params = {
            "attention_mask": attention_mask,
            "max_new_tokens": 512,
            "do_sample": False,
            "repetition_penalty": 1.2,
            "eos_token_id": self.tokenizer.eos_token_id,
            "pad_token_id": self.tokenizer.eos_token_id,
            # "eos_token_id": self.tokenizer.encode("<|im_end|>"),
        }

        inference_params = default_inference_params.copy()
        inference_params.update(**kwargs)
        if stream:
            inference_params.update(streamer=self.streamer)

        # Inference
        with torch.no_grad():
            outputs = self.model.generate(
                tokenized_input,
                **inference_params,
            )[0]
        output = self.tokenizer.decode(
            outputs[tokenized_input.size(1):],
            skip_special_tokens=True,
        )
        return output

model_path_or_id = "Yuto-24/llm-jp-3-13B-Tengentoppa_magpie"

# Loading model here.
llm = CallLLM(model_path_or_id)

SYSTEM_PROMPT = """
# あなたが必ず従うべき事項

## 役割

あなたは誠実で優秀なアシスタントです。
質問に対し、簡潔に答えます。
ハルシネーションをしません。
必ず正しい情報のみを答えます。

## 指示

- 評価観点に沿った出力を作成します。
- ユーザから特別な指示が与えられている場合には、必ず従います。
- 具体例には評価観点が含まれていますが、あなたが考える「出力」のみを回答してください。
- 評価観点は、人間があなたの出力を評価するために利用します。
- 論理的にステップバイステップで考えてください。

## 具体例

```markdown
{examples}
```
""".strip()

EXAMPLE_TEMPLATE = """
### 入力

{dataset_input}

### 評価観点

{dataset_eval_aspect}

### 出力

{dataset_answer}
""".strip()


# タスクとなるデータの読み込み
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行

import os
import json

datasets = []
with open(f"{os.path.dirname(os.path.abspath('**file**'))}/workspace/elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
        line = line.strip()
        item += line
        if item.endswith("}"):
            datasets.append(json.loads(item))
            item = ""

# モデルによるタスクの推論。
import re
from tqdm import tqdm

results = []
n = 2


for data in tqdm(datasets, smoothing=0.0):
    input_text = data["input"]
    dataset_index_list = retrieve(input_text, n)

    examples = ""
    for dataset_index in dataset_index_list:
        examples += EXAMPLE_TEMPLATE.format(
            dataset_input=elyza_tasks_datasets["test"]["input"][dataset_index].strip(),
            dataset_eval_aspect=elyza_tasks_datasets["test"]["eval_aspect"][dataset_index].strip(),
            dataset_answer=elyza_tasks_datasets["test"]["output"][dataset_index].strip(),
        )

    system_prompt = SYSTEM_PROMPT.format(
        examples=examples.strip(),
    )
    # print(examples)
    # print(input_text)

    output = llm(input_text=input_text,
                 system_prompt=system_prompt,
                 call_type="chat_template",
                 repetition_penalty=1.15,
                 # stream=True,
                 ).strip()
    # print("-----------------------------------------------------------------------------------------------------------------------------------")
    print(output.strip())
    print("===================================================================================================================================")
    print(re.sub(r"^[\s\S]*?### 出力", "", re.sub(r"^[\s\S]*?\*\*出力\*\*:", "", output)).strip())
    print("-----------------------------------------------------------------------------------------------------------------------------------")

    results.append({
        "task_id": data["task_id"],
        "input": input_text,
        "output_org": output.strip(),
        "output": re.sub(r"^[\s\S]*?### 出力", "", output).strip(),
        "elyza_tasks_id": dataset_index,
        "dataset_input": elyza_tasks_datasets["test"]["input"][dataset_index],
        "dataset_eval_aspect": elyza_tasks_datasets["test"]["eval_aspect"][dataset_index],
        "dataset_answer": elyza_tasks_datasets["test"]["output"][dataset_index],
    })

# results にタスクの解答が入っている

from pprint import pprint
import pandas as pd


# 最大表示「列」数の指定
pd.set_option("display.max_columns", 0)
# 最大表示「行」数の指定
pd.set_option("display.max_rows", 100)
pd.set_option("display.max_colwidth", 550)


json4df = {
    "task_id": [],
    "input": [],
    "output": [],
    "output_org": [],
    # "elyza_tasks_id": [],
    # "dataset_input": [],
    # "dataset_eval_aspect": [],
    # "dataset_answer": [],
}

for result in results:
    json4df["task_id"].append(result["task_id"])
    json4df["input"].append(result["input"])
    json4df["output_org"].append(result["output_org"])
    json4df["output"].append(result["output"])

JSON_FILE_NAME = "llm-jp-3-13B-Tengentoppa-FPFT-magpie-FPFT-elyza-RAG_v2"

result4out = results.copy()
results


# 本コードではinputとeval_aspectも含んでいますが、なくても問題ありません。
# 必須なのはtask_idとoutputとなります。

import re
import sys
from os.path import dirname, abspath, join, isfile


result4out = results.copy()


WD = dirname(abspath("__file__"))
json_dir = join(
    WD,
    "..",
    "jsonl",
)


if JSON_FILE_NAME != "":
    file_path = join(json_dir, f"{JSON_FILE_NAME}.jsonl")
else:
    jsonl_id = re.sub(".*/", "", merged_model_path)
    file_path = join(json_dir, f"{jsonl_id}-outputs.jsonl")

assert not isfile(file_path), f"Error: File `{file_path}` is already exist."

with open(file_path, "w", encoding="utf-8") as f:
    for result in result4out:
        result = {k: v for k, v in result.items() if k != "elyza_tasks_id" and k != "dataset_input" and k !=
                  "dataset_eval_aspect" and k != "dataset_answer"}
        json.dump(
            result, f, ensure_ascii=False
        )  # ensure_ascii=False for handling non-ASCII characters
        f.write("\n")

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

Training Procedure

using axolotl and yaml below.

base_model: llm-jp/llm-jp-3-13b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

# domain_yyyymmdd
output_dir: outputs/matsuo/llm-jp/3/13B/FPFT_20241213

chat_template: chatml
default_system_message: あなたは、大塚商会の誠実で優秀なアシスタントです。

shuffle_merged_datasets: true
datasets:
  # # General
  # - path: data/general/magpie-sft-v1.0.jsonl
  #   ds_type: json
  #   type: chat_template
  #   chat_template: chatml
  #   field_messages: conversations
  #   message_field_role: role
  #   message_field_content: content
  #   roles:
  #     user:
  #       - user
  #     assistant:
  #       - assistant
  #     system:
  #       - system
  - path: data/general/Tengentoppa-sft-v1.0.jsonl
    ds_type: json
    type: alpaca
  # - path: data/general/clean3-ultraboros-20k-ja-filter_train.jsonl
  #   ds_type: json
  #   type: chat_template
  #   # chat_template: chatml
  #   field_messages: conversations
  #   message_field_role: role
  #   message_field_content: value
  #   roles:
  #     user:
  #       - human
  #     assistant:
  #       - gpt
  #     system:
  #       - system
  #   train_on_eos: turn

val_set_size: 0.05

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

# warmup_steps: 100
warmup_ratio: 0.1
evals_per_epoch: 1
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero3.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  eos_token: <|im_end|>
base_model: outputs/matsuo/llm-jp/3/13B/FPFT_20241213
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

# domain_yyyymmdd
output_dir: outputs/matsuo/llm-jp/3/13B/FPFT_20241215

chat_template: chatml
default_system_message: あなたは、大塚商会の誠実で優秀なアシスタントです。

shuffle_merged_datasets: true
datasets:
  - path: data/general/magpie-sft-v1.0.jsonl
    ds_type: json
    type: chat_template
    chat_template: chatml
    field_messages: conversations
    message_field_role: role
    message_field_content: content
    roles:
      user:
        - user
      assistant:
        - assistant
      system:
        - system
  # - path: data/general/Tengentoppa-sft-v1.0.jsonl
  #   ds_type: json
  #   type: alpaca
  - path: data/general/clean3-ultraboros-20k-ja-filter_train.jsonl
    ds_type: json
    type: chat_template
    chat_template: chatml
    field_messages: conversations
    message_field_role: role
    message_field_content: value
    roles:
      user:
        - human
      assistant:
        - gpt
      system:
        - system
    ## NOTE: Leaving the below empty will default to using the simple legacy tokenization strategy where only last message is trained on.
    # Optional[List[str]]. Roles to train on. The tokens from these roles will be considered for the loss.
    roles_to_train: ["gpt", "assistant"]
    # Optional[str]. Which EOS tokens to train on in the conversation. Possible values are:
    # - all: train on all EOS tokens
    # - turn: train on the EOS token at the end of each trainable turn
    # - last: train on the last EOS token in the conversation
    train_on_eos: last

val_set_size: 0.05

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

# warmup_steps: 100
warmup_ratio: 0.1
evals_per_epoch: 1
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero3.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  eos_token: <|im_end|>

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month
7
Safetensors
Model size
13.7B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Yuto-24/llm-jp-3-13B-Tengentoppa_magpie

Finetuned
(1141)
this model

Datasets used to train Yuto-24/llm-jp-3-13B-Tengentoppa_magpie

Collection including Yuto-24/llm-jp-3-13B-Tengentoppa_magpie