|
使用[Firefly](https://github.com/yangjianxin1/Firefly)项目微调ChatGLM2,训练时基本上沿袭官方的多轮对话数据组织格式,并且使用一种更加充分高效的方法训练多轮对话能力。训练数据约为一百万多轮对话数据,包括项目分享的moss数据+2万条school math数据。 |
|
|
|
更多详情见项目[Firefly](https://github.com/yangjianxin1/Firefly) |
|
|
|
单轮对话: |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
""" |
|
单轮对话,不具有对话历史的记忆功能 |
|
""" |
|
|
|
|
|
def main(): |
|
model_name = 'YeungNLP/firefly-chatglm2-6b' |
|
|
|
max_new_tokens = 500 |
|
top_p = 0.9 |
|
temperature = 0.35 |
|
repetition_penalty = 1.0 |
|
device = 'cuda' |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
torch_dtype=torch.float16, |
|
device_map='auto' |
|
).to(device).eval() |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_name, |
|
trust_remote_code=True, |
|
# llama不支持fast |
|
use_fast=False if model.config.model_type == 'llama' else True |
|
) |
|
# QWenTokenizer比较特殊,pad_token_id、bos_token_id、eos_token_id均为None。eod_id对应的token为<|endoftext|> |
|
if tokenizer.__class__.__name__ == 'QWenTokenizer': |
|
tokenizer.pad_token_id = tokenizer.eod_id |
|
tokenizer.bos_token_id = tokenizer.eod_id |
|
tokenizer.eos_token_id = tokenizer.eod_id |
|
|
|
text = input('User:') |
|
while True: |
|
text = text.strip() |
|
# chatglm使用官方的数据组织格式 |
|
if model.config.model_type == 'chatglm': |
|
text = '[Round 1]\n\n问:{}\n\n答:'.format(text) |
|
input_ids = tokenizer(text, return_tensors="pt", add_special_tokens=False).input_ids.to(device) |
|
# 为了兼容qwen-7b,因为其对eos_token进行tokenize,无法得到对应的eos_token_id |
|
else: |
|
input_ids = tokenizer(text, return_tensors="pt", add_special_tokens=False).input_ids.to(device) |
|
bos_token_id = torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long).to(device) |
|
eos_token_id = torch.tensor([[tokenizer.eos_token_id]], dtype=torch.long).to(device) |
|
input_ids = torch.concat([bos_token_id, input_ids, eos_token_id], dim=1) |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=True, |
|
top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty, |
|
eos_token_id=tokenizer.eos_token_id |
|
) |
|
outputs = outputs.tolist()[0][len(input_ids[0]):] |
|
response = tokenizer.decode(outputs) |
|
response = response.strip().replace(tokenizer.eos_token, "").strip() |
|
print("Firefly:{}".format(response)) |
|
text = input('User:') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
``` |
|
|
|
|
|
多轮对话: |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
def main(): |
|
model_name = 'YeungNLP/firefly-chatglm2-6b' |
|
|
|
device = 'cuda' |
|
max_new_tokens = 500 # 每轮对话最多生成多少个token |
|
history_max_len = 1000 # 模型记忆的最大token长度 |
|
top_p = 0.9 |
|
temperature = 0.35 |
|
repetition_penalty = 1.0 |
|
|
|
# 加载模型 |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
torch_dtype=torch.float16, |
|
device_map='auto' |
|
).to(device).eval() |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_name, |
|
trust_remote_code=True, |
|
# llama不支持fast |
|
use_fast=False if model.config.model_type == 'llama' else True |
|
) |
|
# QWenTokenizer比较特殊,pad_token_id、bos_token_id、eos_token_id均为None。eod_id对应的token为<|endoftext|> |
|
if tokenizer.__class__.__name__ == 'QWenTokenizer': |
|
tokenizer.pad_token_id = tokenizer.eod_id |
|
tokenizer.bos_token_id = tokenizer.eod_id |
|
tokenizer.eos_token_id = tokenizer.eod_id |
|
|
|
# 记录所有历史记录 |
|
if model.config.model_type != 'chatglm': |
|
history_token_ids = torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long) |
|
else: |
|
history_token_ids = torch.tensor([[]], dtype=torch.long) |
|
|
|
# 开始对话 |
|
utterance_id = 0 # 记录当前是第几轮对话,为了契合chatglm的数据组织格式 |
|
user_input = input('User:') |
|
while True: |
|
utterance_id += 1 |
|
# chatglm使用官方的数据组织格式 |
|
if model.config.model_type == 'chatglm': |
|
user_input = '[Round {}]\n\n问:{}\n\n答:'.format(utterance_id, user_input) |
|
user_input_ids = tokenizer(user_input, return_tensors="pt", add_special_tokens=False).input_ids |
|
# firefly的数据组织格式 |
|
# 为了兼容qwen-7b,因为其对eos_token进行tokenize,无法得到对应的eos_token_id |
|
else: |
|
input_ids = tokenizer(user_input, return_tensors="pt", add_special_tokens=False).input_ids |
|
eos_token_id = torch.tensor([[tokenizer.eos_token_id]], dtype=torch.long) |
|
user_input_ids = torch.concat([input_ids, eos_token_id], dim=1) |
|
history_token_ids = torch.concat((history_token_ids, user_input_ids), dim=1) |
|
model_input_ids = history_token_ids[:, -history_max_len:].to(device) |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
input_ids=model_input_ids, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, |
|
temperature=temperature, repetition_penalty=repetition_penalty, eos_token_id=tokenizer.eos_token_id |
|
) |
|
model_input_ids_len = model_input_ids.size(1) |
|
response_ids = outputs[:, model_input_ids_len:] |
|
history_token_ids = torch.concat((history_token_ids, response_ids.cpu()), dim=1) |
|
response = tokenizer.batch_decode(response_ids) |
|
print("Firefly:" + response[0].strip().replace(tokenizer.eos_token, "")) |
|
user_input = input('User:') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
``` |