bert-chn-classifier

This model is a fine-tuned version of ai-forever/ruBert-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2343
  • Accuracy: 0.9595
  • Precision: 0.9595
  • Recall: 0.9595
  • F1: 0.9595

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.2249 1.0 4381 0.1770 0.9513 0.9513 0.9513 0.9513
0.1078 2.0 8762 0.1951 0.9571 0.9571 0.9571 0.9571
0.0234 3.0 13143 0.2343 0.9595 0.9595 0.9595 0.9595

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
427M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for XvKuoMing/bert-chn-classifier

Finetuned
(7)
this model