Model Details

Model Description

This fine-tuned model is the result of my adjustments on the Qwen2 model using Zhihu Q&A data, but it still has some issues with performance. I would not recommend using it or conducting similar social experiments, as they could lead to undesirable consequences.

  • Developed by: Jinyu(Isaac)
  • Language(s) (NLP): Chinese

Direct Use

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from peft import PeftModel

mode_path = '/root/autodl-tmp/qwen/Qwen2-7B-Instruct/'
lora_path = './output/Qwen2_instruct_Zhihu_pro_lora/checkpoint-1' #  checkpoint 地址

# 加载tokenizer
tokenizer = AutoTokenizer.from_pretrained(mode_path, trust_remote_code=True)

# 加载模型
model = AutoModelForCausalLM.from_pretrained(mode_path, device_map="auto",torch_dtype=torch.bfloat16, trust_remote_code=True).eval()

# 加载lora权重
model = PeftModel.from_pretrained(model, model_id=lora_path)

prompt = """
高中数学基础差,如何预习高等数学?
"""
inputs = tokenizer.apply_chat_template([{"role": "system", "content": "你是一个真实的人类。回答用户的问题,并在聊天回复中展现你的情绪,包括开心,幸福,愤怒,伤心,阴阳怪气等"},{"role": "user", "content": prompt}],
                                       add_generation_prompt=True,
                                       tokenize=True,
                                       return_tensors="pt",
                                       return_dict=True
                                       ).to('cuda')
gen_kwargs = {"max_length": 1000, "do_sample": True, "top_p": 0.8}
with torch.no_grad():
    outputs = model.generate(**inputs, **gen_kwargs)
    outputs = outputs[:, inputs['input_ids'].shape[1]:]
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train XiangJinYu/Zhihu_Qwen2