Shaheen_Gemma_Urdu_ / README.md
Xhaheen's picture
Update README.md
457334e verified
|
raw
history blame
2.2 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - text-generation-inference
  - transformers
  - unsloth
  - gemma
  - trl
base_model: unsloth/gemma-7b-bnb-4bit

Uploaded model

  • Developed by: Xhaheen
  • License: apache-2.0
  • Finetuned from model : unsloth/gemma-7b-bnb-4bit

This gemma model was trained 2x faster with Unsloth and Huggingface's TRL library.

Inference With Unsloth on colab



import torch
major_version, minor_version = torch.cuda.get_device_capability()
 

!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
if major_version >= 8:
    # Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40)
    !pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes
else:
    # Use this for older GPUs (V100, Tesla T4, RTX 20xx)
    !pip install --no-deps xformers trl peft accelerate bitsandbytes
pass



from unsloth import FastLanguageModel
import torch
max_seq_length = 2048
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = False 
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "Xhaheen/Shaheen_Gemma_Urdu_",
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
    device_map="auto"
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference

input_prompt = """
### Instruction:
{}

### Input:
{}

### Response:
{}"""

input_text = input_prompt.format(
        "دیئے گئے موضوع کے بارے میں ایک مختصر پیراگراف لکھیں۔", # instruction
        "قابل تجدید توانائی کے استعمال کی اہمیت", # input
        "", # output - leave this blank for generation!
    )

inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)

response = tokenizer.batch_decode(outputs)