|
--- |
|
base_model: vikp/texify |
|
library_name: transformers.js |
|
pipeline_tag: image-to-text |
|
--- |
|
|
|
https://huggingface.co/vikp/texify with ONNX weights to be compatible with Transformers.js. |
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: |
|
```bash |
|
npm i @xenova/transformers |
|
``` |
|
|
|
**Example:** Image-to-text w/ `Xenova/texify`. |
|
|
|
```js |
|
import { pipeline } from '@xenova/transformers'; |
|
|
|
// Create an image-to-text pipeline |
|
const texify = await pipeline('image-to-text', 'Xenova/texify'); |
|
|
|
// Generate LaTeX from image |
|
const image = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/latex2.png'; |
|
const latex = await texify(image, { max_new_tokens: 384 }); |
|
console.log(latex); |
|
// [{ generated_text: "$$ |\\ \\frac{1}{x}=\\frac{1}{c}|=|\\ \\frac{c-x}{xc}|=\\frac{1}{|x|}\\cdot\\frac{1}{|c|}\\cdot|x-c|$$\n\nThe factor $$ \\frac{1}{|x|}$$ is not good if its near 0." }] |
|
``` |
|
|
|
| Input image | Visualized output | |
|
|--------|--------| |
|
| ![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F61b253b7ac5ecaae3d1efe0c%2F2wuLARy79CfVxqOLgrhDd.png%3C%2Fspan%3E) | ![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F61b253b7ac5ecaae3d1efe0c%2FchMw_jp7StOEhS0yOdL94.png%3C%2Fspan%3E) | |
|
|
|
--- |
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |