|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
- zh |
|
base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
tags: |
|
- text-generation |
|
- transformers |
|
- lora |
|
- llama.cpp |
|
- autoawq |
|
- auto-gptq |
|
datasets: |
|
- llamafactory/alpaca_zh |
|
- llamafactory/alpaca_gpt4_zh |
|
--- |
|
|
|
# Meta-Llama-3-8B-Instruct-zh-10k: A Llama🦙 which speaks Chinese / 一只说中文的羊驼🦙 |
|
|
|
## Model Details / 模型细节 |
|
This model, <u>`Meta-Llama-3-8B-Instruct-zh-10k`</u>, was fine-tuned from the original [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) due to its underperformance in Chinese. Utilizing the LoRa technology within the [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) utilities, this model was adapted to better handle Chinese through three epochs on three corpora: `alpaca_zh`, `alpaca_gpt4_zh`, and `oaast_sft_zh`, amounting to approximately 10,000 examples. This is reflected in the `10k` in its name. |
|
|
|
由于原模型[Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)在中文上表现欠佳,于是该模型 <u>`Meta-Llama-3-8B-Instruct-zh-10k`</u> 微调自此。在[LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory)工具下,利用LoRa 技术,通过`alpaca_zh`、`alpaca_gpt4_zh`和`oaast_sft_zh`三个语料库上、经过三个训练轮次,我们将该模型调整得更好地掌握了中文。三个语料库共计约10,000个样本,这也是其名字中的 `10k` 的由来。 |
|
|
|
For efficient inference, the model was converted to the gguf format using [llama.cpp](https://github.com/ggerganov/llama.cpp) and underwent quantization, resulting in a compact model size of about 3.18 GB, suitable for distribution across various devices. |
|
|
|
为了高效的推理,使用 [llama.cpp](https://github.com/ggerganov/llama.cpp),我们将该模型转化为了gguf格式并量化,从而得到了一个压缩到约 3.18 GB 大小的模型,适合分发在各类设备上。 |
|
|
|
### LoRa Hardware / LoRa 硬件 |
|
- RTX 4090D x 1 |
|
|
|
> [!NOTE] |
|
> The complete fine-tuning process took approximately 12 hours. / 完整微调过程花费约12小时。 |
|
|
|
Additional fine-tuning configurations are avaiable at [Hands-On LoRa](https://github.com/XavierSpycy/hands-on-lora) or [Llama3Ops](https://github.com/XavierSpycy/llama-ops). |
|
|
|
更多微调配置可以在我的个人仓库 [Hands-On LoRa](https://github.com/XavierSpycy/hands-on-lora) 或 [Llama3Ops](https://github.com/XavierSpycy/llama-ops) 获得。 |
|
|
|
### Other Models / 其他模型 |
|
- <u>LLaMA-Factory</u> |
|
- [Meta-Llama-3-8B-Instruct-zh-10k](https://huggingface.co/XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k) |
|
|
|
- <u>llama.cpp</u> |
|
- [Meta-Llama-3-8B-Instruct-zh-10k-GGUF](https://huggingface.co/XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-GGUF) |
|
|
|
- <u>AutoGPTQ</u> |
|
- [Meta-Llama-3-8B-Instruct-zh-10k-GPTQ](https://huggingface.co/XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-GPTQ) |
|
|
|
### Model Developer / 模型开发者 |
|
- **Pretraining**: Meta |
|
- **Fine-tuning**: [XavierSpycy @ GitHub ](https://github.com/XavierSpycy) | [XavierSpycy @ 🤗](https://huggingface.co/XavierSpycy) |
|
|
|
- **预训练**: Meta |
|
- **微调**: [XavierSpycy @ GitHub](https://github.com/XavierSpycy) | [XavierSpycy @ 🤗 ](https://huggingface.co/XavierSpycy) |
|
|
|
|
|
### Usage / 用法 |
|
This model can be utilized like the original <u>Meta-Llama3</u> but offers enhanced performance in Chinese. |
|
|
|
我们能够像原版的<u>Meta-Llama3</u>一样使用该模型,而它提供了提升后的中文能力。 |
|
|
|
#### 1. How to use in transformers |
|
```python |
|
# !pip install accelerate |
|
|
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_id = "XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
prompt = "你好,你是谁?" |
|
|
|
messages = [ |
|
{"role": "system", "content": "你是一个乐于助人的助手。"}, |
|
{"role": "user", "content": prompt}] |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, add_generation_prompt=True, return_tensors="pt").to(model.device) |
|
|
|
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")] |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=256, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9) |
|
|
|
response = outputs[0][input_ids.shape[-1]:] |
|
|
|
print(tokenizer.decode(response, skip_special_tokens=True)) |
|
# 我是一个人工智能助手,旨在帮助用户解决问题和完成任务。 |
|
# 我是一个虚拟的人工智能助手,能够通过自然语言处理技术理解用户的需求并为用户提供帮助。 |
|
``` |
|
|
|
#### 2. How to use in llama.cpp / 如何在llama.cpp中使用 |
|
|
|
|
|
```python |
|
# CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS # -DLLAMA_CUDA=on" \ |
|
# pip install llama-cpp-python \ |
|
# --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu121 |
|
|
|
# Please download the model weights first. / 请先下载模型权重。 |
|
|
|
from llama_cpp import Llama |
|
|
|
llm = Llama( |
|
model_path="/path/to/your/model/Meta-Llama-3-8B-Instruct-zh-10k-GGUF/meta-llama-3-8b-instruct-zh-10k.Q8_0.gguf", |
|
n_gpu_layers=-1) |
|
|
|
# Alternatively / 或者 |
|
# llm = Llama.from_pretrained( |
|
# repo_id="XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-GGUF", |
|
# filename="*Q8_0.gguf", |
|
# verbose=False |
|
# ) |
|
|
|
output = llm( |
|
"Q: 你好,你是谁?A:", # Prompt |
|
max_tokens=256, # Generate up to 32 tokens, set to None to generate up to the end of the context window |
|
stop=["Q:", "\n"], # Stop generating just before the model would generate a new question |
|
echo=True # Echo the prompt back in the output |
|
) # Generate a completion, can also call create_completion |
|
|
|
print(output['choices'][0]['text'].split("A:")[1].strip()) |
|
|
|
# 我是一个人工智能聊天机器人,我的名字叫做“智慧助手”,我由一群程序员设计和开发的。我的主要任务就是通过与您交流来帮助您解决问题,为您提供相关的建议和支持。 |
|
``` |
|
|
|
#### 3. How to use with AutoAWQ / 如何与AutoAWQ一起使用 |
|
```python |
|
# !pip install autoawq |
|
|
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_id = "XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-AWQ" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
prompt = "你好,你是谁?" |
|
|
|
messages = [ |
|
{"role": "system", "content": "你是一个乐于助人的助手。"}, |
|
{"role": "user", "content": prompt}] |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, add_generation_prompt=True, return_tensors="pt").to(model.device) |
|
|
|
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")] |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=256, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9) |
|
|
|
response = outputs[0][input_ids.shape[-1]:] |
|
|
|
print(tokenizer.decode(response, skip_special_tokens=True)) |
|
# 你好!我是一个人工智能助手,我的目的是帮助人们解决问题,回答问题,提供信息和建议。 |
|
``` |
|
|
|
#### 4. How to use with AutoGPTQ / 如何与AutoGPTQ一起使用 |
|
```python |
|
# !pip install auto-gptq --no-build-isolation |
|
|
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_id = "XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-GPTQ" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
prompt = "什么是机器学习?" |
|
|
|
messages = [ |
|
{"role": "system", "content": "你是一个乐于助人的助手。"}, |
|
{"role": "user", "content": prompt}] |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, add_generation_prompt=True, return_tensors="pt").to(model.device) |
|
|
|
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")] |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=256, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9) |
|
|
|
response = outputs[0][input_ids.shape[-1]:] |
|
|
|
print(tokenizer.decode(response, skip_special_tokens=True)) |
|
# 机器学习是人工智能(AI)的一个分支,它允许计算机从数据中学习并改善其性能。它是一种基于算法的方法,用于从数据中识别模式并进行预测。机器学习算法可以从数据中学习,例如文本、图像和音频,并从中获得知识和见解。 |
|
``` |
|
|
|
Further details about the deployment are available in the GitHub repository [Llama3Ops: From LoRa to Deployment with Llama3](https://github.com/XavierSpycy/llama-ops). |
|
|
|
更多关于部署的细节可以在我的个人仓库 [Llama3Ops: From LoRa to Deployment with Llama3](https://github.com/XavierSpycy/llama-ops) 获得。 |
|
|
|
## Ethical Considerations, Safety & Risks / 伦理考量、安全性和风险 |
|
Please refer to [Meta Llama 3's Ethical Considerations](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct#ethical-considerations-and-limitations) for more information. Key points include bias monitoring, responsible usage guidelines, and transparency in model limitations. |
|
|
|
请参考 [Meta Llama 3's Ethical Considerations](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct#ethical-considerations-and-limitations),以获取更多细节。关键点包括偏见监控、负责任的使用指南和模型限制的透明度。 |
|
|
|
## Limitations / 局限性 |
|
- The comprehensive abilities of the model have not been fully tested. |
|
|
|
- While it performs smoothly in Chinese conversations, further benchmarks are required to evaluate its full capabilities. The quality and quantity of the Chinese corpora used may also limit model outputs. |
|
|
|
- Based on current observations, it fundamentally meets the standards in common sense, logic, sentiment analysis, safety, writing, code, and function calls. However, there is room for improvement in role-playing, mathematics, and handling complex tasks with the same text but different meanings. |
|
|
|
- Additionally, catastrophic forgetting in the fine-tuned model has not been evaluated. |
|
|
|
- 该模型的全面的能力尚未全部测试。 |
|
|
|
- 尽管它在中文对话中表现流畅,但需要更多的测评以评估其完整的能力。中文语料库的质量和数量可能都会对模型输出有所制约。 |
|
|
|
- 根据目前的观察,它在常识、逻辑、情绪分析、安全性、写作、代码和函数调用上基本达标,然而,在角色扮演、数学、复杂的同文异义等任务上有待提高。 |
|
|
|
- 另外,微调模型中的灾难性遗忘尚未评估。 |
|
|
|
## Acknowledgements / 致谢 |
|
We thank Meta for their open-source contributions, which have greatly benefited the developer community, and acknowledge the collaborative efforts of developers in enhancing this community. |
|
|
|
我们感谢 Meta 的开源贡献,这极大地帮助了开发者社区,同时,也感谢致力于提升社区的开发者们的努力。 |
|
|
|
## References / 参考资料 |
|
|
|
``` |
|
@article{llama3modelcard, |
|
title={Llama 3 Model Card}, |
|
author={AI@Meta}, |
|
year={2024}, |
|
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}} |
|
|
|
@inproceedings{zheng2024llamafactory, |
|
title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models}, |
|
author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Zhangchi Feng and Yongqiang Ma}, |
|
booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)}, |
|
address={Bangkok, Thailand}, |
|
publisher={Association for Computational Linguistics}, |
|
year={2024}, |
|
url={http://arxiv.org/abs/2403.13372}} |
|
``` |