Description

This repository provides a Diffusers version of FLUX.1-dev Depth ControlNet checkpoint by Xlabs AI, original repo.

Example Picture 1

How to use

This model can be used directly with the diffusers library

import torch
from diffusers.utils import load_image
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from PIL import Image
import numpy as np

generator = torch.Generator(device="cuda").manual_seed(87544357)

controlnet = FluxControlNetModel.from_pretrained(
  "Xlabs-AI/flux-controlnet-depth-diffusers",
  torch_dtype=torch.bfloat16,
  use_safetensors=True,
)
pipe = FluxControlNetPipeline.from_pretrained(
  "black-forest-labs/FLUX.1-dev",
  controlnet=controlnet,
  torch_dtype=torch.bfloat16
)
pipe.to("cuda")

control_image = load_image("https://huggingface.co/Xlabs-AI/flux-controlnet-depth-diffusers/resolve/main/depth_example.png")
prompt = "photo of fashion woman in the street"

image = pipe(
    prompt,
    control_image=control_image,
    controlnet_conditioning_scale=0.7,
    num_inference_steps=25,
    guidance_scale=3.5,
    height=768,
    width=1024,
    generator=generator,
    num_images_per_prompt=1,
).images[0]

image.save("output_test_controlnet.png")

License

Our weights fall under the FLUX.1 [dev] Non-Commercial License

Downloads last month
278
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for XLabs-AI/flux-controlnet-depth-diffusers

Adapter
(15444)
this model

Spaces using XLabs-AI/flux-controlnet-depth-diffusers 6