File size: 38,809 Bytes
d1c467d 8fd9ae0 d1c467d 8fd9ae0 d1c467d 8fd9ae0 d1c467d 8fd9ae0 d1c467d 8fd9ae0 d1c467d 8fd9ae0 d1c467d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 |
# ADAPTED FROM https://raw.githubusercontent.com/huggingface/transformers/main/src/transformers/models/llava/modeling_llava.py
# coding=utf-8
# Copyright 2023 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Llava model."""
import math
import logging
from dataclasses import dataclass
from functools import partial
from typing import List, Optional, Tuple, Union
import timm
import torch
import torch.utils.checkpoint
from torch import nn
from transformers import LlavaConfig, PreTrainedModel, add_start_docstrings, AutoModel, AutoModelForCausalLM, Cache, \
T5ForConditionalGeneration, HybridCache, Gemma2ForCausalLM
from transformers.utils import ModelOutput, add_start_docstrings_to_model_forward, replace_return_docstrings
from transformers import LlavaConfig
from transformers.activations import ACT2FN
import torch
from einops import rearrange, repeat
from torch import einsum, nn
from .configuration_centurio import CenturioConfig
class LlavaMLPProjector(nn.Module):
def __init__(self, config: LlavaConfig):
super().__init__()
self.linear_1 = nn.Linear(config.image_hidden_size, config.text_config.hidden_size, bias=True)
self.act = ACT2FN["gelu"]
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
def forward(self, image_features):
hidden_states = self.linear_1(image_features)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class LlavaMultiModalAdapter(nn.Module):
def __init__(self, config: LlavaConfig):
super().__init__()
if config.adapter_type == "window-pool":
self.adapter = WindowPoolProjector(config)
elif config.adapter_type == "window-shuffel":
self.adapter = WindowShuffelProjector(config)
elif config.adapter_type == "multiscale-pool":
self.adapter = MultiscalePoolProjector(config)
elif config.adapter_type == "multiscale-shuffel":
self.adapter = MultiscaleShuffleProjector(config)
else:
self.adapter = LlavaMLPProjector(config)
def forward(self, image_features):
return self.adapter(image_features)
class WindowMLPProjector(nn.Module):
def __init__(self, config: LlavaConfig):
super().__init__()
self.multi_scale = config.adapter_config.get("multi_scale", 2) #config.adapter_config.get("multi_scale")
self.linear_1 = nn.Linear(config.image_hidden_size, config.text_config.hidden_size, bias=True)
self.act = ACT2FN["gelu"]
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
def forward(self, image_features):
hidden_states = self.linear_1(image_features)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
windows = 1 + self.multi_scale**2
hidden_states = rearrange(hidden_states, "(b h) w d -> b (h w) d", h=windows)
return hidden_states
class WindowPoolProjector(nn.Module):
def __init__(self, config: LlavaConfig):
super().__init__()
self.multi_scale = config.adapter_config.get("multi_scale", 2) #config.adapter_config.get("multi_scale")
self.pool = nn.AdaptiveAvgPool2d(getattr(config, "adapter_pool", 8))
self.linear_1 = nn.Linear(config.image_hidden_size, config.text_config.hidden_size, bias=True)
self.act = ACT2FN["gelu"]
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
def forward(self, image_features):
hidden_states = self.linear_1(image_features)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
b, num_tokens, c = hidden_states.shape
h = int(math.sqrt(num_tokens))
hidden_states = rearrange(hidden_states, "b (h w) d -> b d h w", h=h, w=h)
hidden_states = self.pool(hidden_states)
hidden_states = rearrange(hidden_states, "b d h w -> b (h w) d")
windows = 1 + self.multi_scale**2
hidden_states = rearrange(hidden_states, "(b h) w d -> b (h w) d", h=windows)
return hidden_states
class WindowShuffelProjector(nn.Module):
def __init__(self, config: LlavaConfig):
super().__init__()
self.multi_scale = config.adapter_config.get("multi_scale", 2) #config.adapter_config.get("multi_scale")
self.scale_factor = getattr(config, "adapter_pool", 2)
self.pixel_unshuffel = nn.PixelUnshuffle(self.scale_factor)
self.linear_1 = nn.Linear(config.image_hidden_size*(self.scale_factor**2), config.text_config.hidden_size, bias=True)
self.act = ACT2FN["gelu"]
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
def forward(self, image_features):
bsz, seq, embed_dim = image_features.size()
height = width = int(seq ** 0.5)
hidden_states = rearrange(image_features, "b (w h) d -> b d w h", w=width, h=height)
hidden_states = self.pixel_unshuffel(hidden_states)
hidden_states = rearrange(hidden_states, "b d w h -> b (w h) d")
hidden_states = self.linear_1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
windows = 1 + self.multi_scale ** 2
hidden_states = rearrange(hidden_states, "(b h) w d -> b (h w) d", h=windows)
return hidden_states
class MultiscalePoolProjector(nn.Module):
def __init__(self, config: LlavaConfig):
super().__init__()
self.multi_scale = config.adapter_config.get("multi_scale", 2) #getattr(config.adapter_config, "adapter_multi_scale", 2)
self.pool = nn.AvgPool2d(self.multi_scale)
self.linear_1 = nn.Linear(config.image_hidden_size*2, config.text_config.hidden_size, bias=True)
self.act = ACT2FN["gelu"]
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
def forward(self, image_features):
b, num_tokens, c = image_features.shape
h = int(math.sqrt(num_tokens))
assert h * h == num_tokens
image_features = rearrange(image_features, "b (h w) d -> b d h w", h=h, w=h)
steps = 1 + self.multi_scale**2
low_res_features = image_features[::steps]
high_res_features = image_features[[i for i in range(image_features.size(0)) if i%steps > 0]]
merged_features = rearrange(high_res_features, "(b m) d h w -> b d h (m w)", m=self.multi_scale)
merged_features = rearrange(merged_features, "(b m) d h w -> b d (m h) w", m=self.multi_scale)
merged_features = self.pool(merged_features)
concat_features = torch.cat([low_res_features, merged_features], dim=1)
concat_features = rearrange(concat_features, "b d h w -> b (h w) d")
hidden_states = self.linear_1(concat_features)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class MultiscaleShuffleProjector(nn.Module):
def __init__(self, config):
super().__init__()
self.multi_scale = config.adapter_config.get("multi_scale", 2) #config.adapter_config.get("multi_scale")
self.shuffle = nn.PixelUnshuffle(self.multi_scale)
inc, ouc = config.image_hidden_size*(1+self.multi_scale**2), config.text_config.hidden_size
#
self.mlp = nn.Sequential(
nn.Linear(inc, ouc), nn.GELU(), nn.Linear(ouc, ouc)
)
self.dwn = nn.AvgPool2d(2) #TokenDownLayer((12, 12))
self.peg = nn.Conv2d(ouc, ouc, 3, 1, 1, bias=True, groups=ouc) #PosInjectLayer(ouc, ouc, stride=1)
def forward(self, x):
b, num_tokens, c = x.shape
h = int(math.sqrt(num_tokens))
assert h * h == num_tokens
image_features = rearrange(x, "b (h w) d -> b d h w", h=h, w=h)
steps = 1 + self.multi_scale ** 2
low_res_features = image_features[::steps]
high_res_features = image_features[[i for i in range(image_features.size(0)) if i % steps > 0]]
merged_features = rearrange(high_res_features, "(b m) d h w -> b d h (m w)", m=self.multi_scale)
merged_features = rearrange(merged_features, "(b m) d h w -> b d (m h) w", m=self.multi_scale)
merged_features = self.shuffle(merged_features)
concat_features = torch.cat([low_res_features, merged_features], dim=1)
concat_features = rearrange(concat_features, "b d h w -> b (h w) d")
x = self.mlp(concat_features)
# x = self.dwn(x)
b, num_tokens, c = x.shape
h = int(math.sqrt(num_tokens))
assert h * h == num_tokens
x = rearrange(x, "b (h w) d -> b d h w", h=h, w=h) #x.permute(0, 2, 1).reshape(b, -1, h, h)
x = self.dwn(x)
x = self.peg(x) + x
x = rearrange(x, "b d h w -> b (h w) d") #x.flatten(2).transpose(1, 2)
return x
#
_CONFIG_FOR_DOC = "LlavaConfig"
LLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = [
"llava-hf/llava-1.5-7b-hf",
"llava-hf/llava-1.5-13b-hf",
"llava-hf/bakLlava-v1-hf",
# See all Llava models at https://huggingface.co/models?filter=llava
]
@dataclass
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Llava
class LlavaCausalLMOutputWithPast(ModelOutput):
"""
Base class for Llava causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
labels: Optional[torch.LongTensor] = None
LLAVA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`LlavaConfig`] or [`LlavaVisionConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
LLAVA_START_DOCSTRING,
)
class LlavaPreTrainedModel(PreTrainedModel):
config_class = LlavaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["LlavaVisionAttention"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
def _init_weights(self, module):
# important: this ported version of Llava isn't meant for training from scratch - only
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
# https://github.com/haotian-liu/LLaVA/tree/main/llava should serve for that purpose
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.text_config.initializer_range
)
if hasattr(module, "class_embedding"):
module.class_embedding.data.normal_(mean=0.0, std=std)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def _supports_sdpa(self):
"""
Retrieve language_model's attribute to check whether the model supports
SDPA or not.
"""
return self.language_model._supports_sdpa
LLAVA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
The tensors corresponding to the input images. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses
[`CLIPImageProcessor`] for processing images).
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class CenturioForConditionalGeneration(LlavaPreTrainedModel):
config_class = CenturioConfig
_supports_cache_class = True
_supports_quantized_cache = False
_supports_static_cache = True
def __init__(self, config: CenturioConfig):
super().__init__(config)
# self.vision_tower = AutoModel.from_config(config.vision_config)
self.vision_tower = timm.create_model(
config.timm_model,
pretrained=False,
num_classes=0,
)
# https://github.com/TRI-ML/prismatic-vlms/blob/main/prismatic/models/backbones/vision/base_vision.py#L125
def unpack_tuple(fn):
def wrapper(*args, **kwargs):
result = fn(*args, **kwargs)
return result[0] if isinstance(result, tuple) or isinstance(result, list) else result
return wrapper
self.vision_tower.forward = unpack_tuple(
partial(
self.vision_tower.get_intermediate_layers, n={len(self.vision_tower.blocks) - 2}
)
)
config.image_hidden_size = self.vision_tower.embed_dim
self.multi_modal_projector = LlavaMultiModalAdapter(config)
self.vocab_size = config.text_config.vocab_size
# if getattr(config, "delay_init", False):
# self.language_model = None
# else:
self.language_model = AutoModelForCausalLM.from_config(
config.text_config, attn_implementation=config._attn_implementation, torch_dtype=config.torch_dtype,
trust_remote_code = True
)
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
self.post_init()
def tie_weights(self):
return self.language_model.tie_weights()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels):
num_images, num_image_patches, embed_dim = image_features.shape
batch_size, sequence_length = input_ids.shape
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
# 1. Create a mask to know where special image tokens are
special_image_token_mask = input_ids == self.config.image_token_index
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
#check if preprocessing already expanded the number of <image_token> needed to directly replace them
if torch.sum(special_image_token_mask) == image_features.shape[:-1].numel():
new_inputs_embeds = inputs_embeds.clone()
reshaped_image_hidden_states = image_features.view(-1, embed_dim)
new_inputs_embeds[special_image_token_mask] = reshaped_image_hidden_states
position_ids = (attention_mask.cumsum(-1) - 1).masked_fill_((attention_mask == 0), 1)
return new_inputs_embeds, attention_mask, labels, position_ids
# Compute the maximum embed dimension
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index)
# 2. Compute the positions where text should be written
# Calculate new positions for text tokens in merged image-text sequence.
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
if left_padding:
new_token_positions += nb_image_pad[:, None] # offset for left padding
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
# 3. Create the full embedding, already padded to the maximum position
final_embedding = torch.zeros(
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
)
final_attention_mask = torch.zeros(
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
)
if labels is not None:
final_labels = torch.full(
(batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device
)
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
# set the corresponding tensors into their correct target device.
target_device = inputs_embeds.device
batch_indices, non_image_indices, text_to_overwrite = (
batch_indices.to(target_device),
non_image_indices.to(target_device),
text_to_overwrite.to(target_device),
)
attention_mask = attention_mask.to(target_device)
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
if labels is not None:
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
# 5. Fill the embeddings corresponding to the images. Anything that is still zeros needs filling
## BUG: this does NOT work for models (Phi-3) that have set some embedding (padding) to be 0. Replaced with the below three lines.
# image_to_overwrite = torch.all(final_embedding == 0, dim=-1)
image_to_overwrite = torch.ones_like(final_attention_mask)
image_to_overwrite[batch_indices, text_to_overwrite] = torch.zeros_like(attention_mask)[batch_indices, non_image_indices]
image_to_overwrite = image_to_overwrite.bool()
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)
if image_to_overwrite.sum() != image_features.shape[:-1].numel():
raise ValueError(
f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
)
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
final_attention_mask |= image_to_overwrite
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
if labels is None:
final_labels = None
return final_embedding, final_attention_mask, final_labels, position_ids
@add_start_docstrings_to_model_forward(LLAVA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=LlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs
) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is None:
# 1. Extra the input embeddings
inputs_embeds = self.get_input_embeddings()(input_ids)
# 2. Merge text and images
if pixel_values is not None and input_ids.shape[1] != 1:
image_outputs = self.vision_tower(pixel_values)
image_features = self.multi_modal_projector(image_outputs)
image_features = image_features.to(inputs_embeds.dtype)
inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features(
image_features, inputs_embeds, input_ids, attention_mask, labels
)
if labels is None:
labels = torch.full_like(attention_mask, self.config.ignore_index).to(torch.long)
else:
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
# generation with cache
if past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
if isinstance(past_key_values, Cache):
first_layer_past_key_value = past_key_values.key_cache[0][:, :, :, 0]
else:
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
target_seqlen = first_layer_past_key_value.shape[-1] + 1
extended_attention_mask = torch.ones(
(attention_mask.shape[0], target_seqlen - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
attention_mask = torch.cat((attention_mask, extended_attention_mask), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
# cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)[
# -target_length:
# ]
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
# cache_position=cache_position,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs[0]
loss = None
if labels is not None:
# Shift so that tokens < n predict n
if attention_mask is not None:
shift_attention_mask = attention_mask[..., 1:]
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
else:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return LlavaCausalLMOutputWithPast(
loss=loss,
logits=logits,
labels=labels,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
pixel_values=None,
attention_mask=None,
cache_position=None,
use_cache=True,
position_ids=None,
**kwargs
):
model_inputs = self.language_model.prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
**kwargs,
)
#Ugly comparison. Should use a config var that knows how many image tokens we have like HF does.
# But we are unlikely to use >30 images in one sample or use <=30 tokens per image.
if cache_position[0] == 0:
model_inputs["pixel_values"] = pixel_values
# "legacy" mode
if (input_ids == self.config.image_token_index).sum(1).max() < 30:
if past_key_values is not None:
if isinstance(past_key_values, Cache):
# branch for Gemma2 with hybrid cache
if past_key_values.seen_tokens is None:
past_length = cache_position[0] # torch.tensor(0, device=input_ids.device)
max_cache_length = (
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
if past_key_values.get_max_length() is not None
else None
)
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
# old default branch
else:
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
else:
cache_length = past_length = past_key_values[0][0].shape[2]
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
elif self.config.image_token_index in input_ids:
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
# older attention values, as their corresponding values are not part of the input.
# if cache_length < past_length and attention_mask is not None:
# attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
# if cache_position[0] == 0 or (input_ids == self.config.image_token_index).sum(1).max() > 0:
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"attention_mask": attention_mask,
"use_cache": use_cache,
"pixel_values": pixel_values,
}
)
return model_inputs
def _reorder_cache(self, *args, **kwargs):
return self.language_model._reorder_cache(*args, **kwargs)
|