File size: 38,809 Bytes
d1c467d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fd9ae0
d1c467d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fd9ae0
d1c467d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fd9ae0
d1c467d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fd9ae0
d1c467d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fd9ae0
d1c467d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fd9ae0
 
d1c467d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
# ADAPTED FROM https://raw.githubusercontent.com/huggingface/transformers/main/src/transformers/models/llava/modeling_llava.py
# coding=utf-8
# Copyright 2023 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Llava model."""
import math

import logging
from dataclasses import dataclass
from functools import partial
from typing import List, Optional, Tuple, Union

import timm
import torch
import torch.utils.checkpoint
from torch import nn
from transformers import LlavaConfig, PreTrainedModel, add_start_docstrings, AutoModel, AutoModelForCausalLM, Cache, \
    T5ForConditionalGeneration, HybridCache, Gemma2ForCausalLM
from transformers.utils import ModelOutput, add_start_docstrings_to_model_forward, replace_return_docstrings

from transformers import LlavaConfig
from transformers.activations import ACT2FN
import torch
from einops import rearrange, repeat
from torch import einsum, nn

from .configuration_centurio import CenturioConfig

class LlavaMLPProjector(nn.Module):
    def __init__(self, config: LlavaConfig):
        super().__init__()

        self.linear_1 = nn.Linear(config.image_hidden_size, config.text_config.hidden_size, bias=True)
        self.act = ACT2FN["gelu"]
        self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)

    def forward(self, image_features):
        hidden_states = self.linear_1(image_features)
        hidden_states = self.act(hidden_states)
        hidden_states = self.linear_2(hidden_states)
        return hidden_states

class LlavaMultiModalAdapter(nn.Module):
    def __init__(self, config: LlavaConfig):
        super().__init__()

        if config.adapter_type == "window-pool":
            self.adapter = WindowPoolProjector(config)
        elif config.adapter_type == "window-shuffel":
            self.adapter = WindowShuffelProjector(config)
        elif config.adapter_type == "multiscale-pool":
            self.adapter = MultiscalePoolProjector(config)
        elif config.adapter_type == "multiscale-shuffel":
            self.adapter = MultiscaleShuffleProjector(config)
        else:
            self.adapter = LlavaMLPProjector(config)

    def forward(self, image_features):
        return self.adapter(image_features)



class WindowMLPProjector(nn.Module):
    def __init__(self, config: LlavaConfig):
        super().__init__()
        self.multi_scale = config.adapter_config.get("multi_scale", 2) #config.adapter_config.get("multi_scale")
        self.linear_1 = nn.Linear(config.image_hidden_size, config.text_config.hidden_size, bias=True)
        self.act = ACT2FN["gelu"]
        self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)

    def forward(self, image_features):
        hidden_states = self.linear_1(image_features)
        hidden_states = self.act(hidden_states)
        hidden_states = self.linear_2(hidden_states)

        windows = 1 + self.multi_scale**2
        hidden_states = rearrange(hidden_states, "(b h) w d -> b (h w) d", h=windows)

        return hidden_states


class WindowPoolProjector(nn.Module):
    def __init__(self, config: LlavaConfig):
        super().__init__()
        self.multi_scale = config.adapter_config.get("multi_scale", 2) #config.adapter_config.get("multi_scale")
        self.pool = nn.AdaptiveAvgPool2d(getattr(config, "adapter_pool", 8))
        self.linear_1 = nn.Linear(config.image_hidden_size, config.text_config.hidden_size, bias=True)
        self.act = ACT2FN["gelu"]
        self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)

    def forward(self, image_features):
        hidden_states = self.linear_1(image_features)
        hidden_states = self.act(hidden_states)
        hidden_states = self.linear_2(hidden_states)

        b, num_tokens, c = hidden_states.shape
        h = int(math.sqrt(num_tokens))

        hidden_states = rearrange(hidden_states, "b (h w) d -> b d h w", h=h, w=h)
        hidden_states = self.pool(hidden_states)
        hidden_states = rearrange(hidden_states, "b d h w -> b (h w) d")

        windows = 1 + self.multi_scale**2
        hidden_states = rearrange(hidden_states, "(b h) w d -> b (h w) d", h=windows)
        return hidden_states


class WindowShuffelProjector(nn.Module):
    def __init__(self, config: LlavaConfig):
        super().__init__()
        self.multi_scale = config.adapter_config.get("multi_scale", 2) #config.adapter_config.get("multi_scale")
        self.scale_factor = getattr(config, "adapter_pool", 2)
        self.pixel_unshuffel = nn.PixelUnshuffle(self.scale_factor)
        self.linear_1 = nn.Linear(config.image_hidden_size*(self.scale_factor**2), config.text_config.hidden_size, bias=True)
        self.act = ACT2FN["gelu"]
        self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)



    def forward(self, image_features):
        bsz, seq, embed_dim = image_features.size()
        height = width = int(seq ** 0.5)
        hidden_states = rearrange(image_features, "b (w h) d -> b d w h", w=width, h=height)
        hidden_states = self.pixel_unshuffel(hidden_states)
        hidden_states = rearrange(hidden_states, "b d w h -> b (w h) d")

        hidden_states = self.linear_1(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.linear_2(hidden_states)

        windows = 1 + self.multi_scale ** 2
        hidden_states = rearrange(hidden_states, "(b h) w d -> b (h w) d", h=windows)
        return hidden_states


class MultiscalePoolProjector(nn.Module):
    def __init__(self, config: LlavaConfig):
        super().__init__()

        self.multi_scale = config.adapter_config.get("multi_scale", 2) #getattr(config.adapter_config, "adapter_multi_scale", 2)
        self.pool = nn.AvgPool2d(self.multi_scale)
        self.linear_1 = nn.Linear(config.image_hidden_size*2, config.text_config.hidden_size, bias=True)
        self.act = ACT2FN["gelu"]
        self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)

    def forward(self, image_features):
        b, num_tokens, c = image_features.shape
        h = int(math.sqrt(num_tokens))
        assert h * h == num_tokens
        image_features = rearrange(image_features, "b (h w) d -> b d h w", h=h, w=h)

        steps = 1 + self.multi_scale**2
        low_res_features = image_features[::steps]
        high_res_features = image_features[[i for i in range(image_features.size(0)) if i%steps > 0]]

        merged_features = rearrange(high_res_features, "(b m) d h w -> b d h (m w)", m=self.multi_scale)
        merged_features = rearrange(merged_features, "(b m) d h w -> b d (m h) w", m=self.multi_scale)

        merged_features = self.pool(merged_features)

        concat_features = torch.cat([low_res_features, merged_features], dim=1)
        concat_features = rearrange(concat_features, "b d h w -> b (h w) d")

        hidden_states = self.linear_1(concat_features)
        hidden_states = self.act(hidden_states)
        hidden_states = self.linear_2(hidden_states)
        return hidden_states

class MultiscaleShuffleProjector(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.multi_scale = config.adapter_config.get("multi_scale", 2) #config.adapter_config.get("multi_scale")
        self.shuffle = nn.PixelUnshuffle(self.multi_scale)

        inc, ouc = config.image_hidden_size*(1+self.multi_scale**2), config.text_config.hidden_size
        #
        self.mlp = nn.Sequential(
            nn.Linear(inc, ouc), nn.GELU(), nn.Linear(ouc, ouc)
        )

        self.dwn = nn.AvgPool2d(2) #TokenDownLayer((12, 12))
        self.peg = nn.Conv2d(ouc, ouc, 3, 1, 1, bias=True, groups=ouc) #PosInjectLayer(ouc, ouc, stride=1)

    def forward(self, x):
        b, num_tokens, c = x.shape
        h = int(math.sqrt(num_tokens))
        assert h * h == num_tokens
        image_features = rearrange(x, "b (h w) d -> b d h w", h=h, w=h)

        steps = 1 + self.multi_scale ** 2
        low_res_features = image_features[::steps]
        high_res_features = image_features[[i for i in range(image_features.size(0)) if i % steps > 0]]

        merged_features = rearrange(high_res_features, "(b m) d h w -> b d h (m w)", m=self.multi_scale)
        merged_features = rearrange(merged_features, "(b m) d h w -> b d (m h) w", m=self.multi_scale)

        merged_features = self.shuffle(merged_features)

        concat_features = torch.cat([low_res_features, merged_features], dim=1)
        concat_features = rearrange(concat_features, "b d h w -> b (h w) d")

        x = self.mlp(concat_features)

        # x = self.dwn(x)
        b, num_tokens, c = x.shape
        h = int(math.sqrt(num_tokens))
        assert h * h == num_tokens
        x = rearrange(x, "b (h w) d -> b d h w", h=h, w=h) #x.permute(0, 2, 1).reshape(b, -1, h, h)
        x = self.dwn(x)
        x = self.peg(x) + x
        x = rearrange(x, "b d h w -> b (h w) d") #x.flatten(2).transpose(1, 2)

        return x
#

_CONFIG_FOR_DOC = "LlavaConfig"

LLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "llava-hf/llava-1.5-7b-hf",
    "llava-hf/llava-1.5-13b-hf",
    "llava-hf/bakLlava-v1-hf",
    # See all Llava models at https://huggingface.co/models?filter=llava
]


@dataclass
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Llava
class LlavaCausalLMOutputWithPast(ModelOutput):
    """

    Base class for Llava causal language model (or autoregressive) outputs.



    Args:

        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):

            Language modeling loss (for next-token prediction).

        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):

            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):

            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape

            `(batch_size, num_heads, sequence_length, embed_size_per_head)`)



            Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see

            `past_key_values` input) to speed up sequential decoding.

        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):

            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +

            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.



            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):

            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,

            sequence_length)`.



            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention

            heads.

        image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):

            Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,

            sequence_length, hidden_size)`.



            image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver

    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    labels: Optional[torch.LongTensor] = None



LLAVA_START_DOCSTRING = r"""

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the

    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads

    etc.)



    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.

    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage

    and behavior.



    Parameters:

        config ([`LlavaConfig`] or [`LlavaVisionConfig`]):

            Model configuration class with all the parameters of the model. Initializing with a config file does not

            load the weights associated with the model, only the configuration. Check out the

            [`~PreTrainedModel.from_pretrained`] method to load the model weights.

"""


@add_start_docstrings(

    "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",

    LLAVA_START_DOCSTRING,

)
class LlavaPreTrainedModel(PreTrainedModel):
    config_class = LlavaConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["LlavaVisionAttention"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True

    def _init_weights(self, module):
        # important: this ported version of Llava isn't meant for training from scratch - only
        # inference and fine-tuning - so the proper init weights code has been removed - the original codebase
        # https://github.com/haotian-liu/LLaVA/tree/main/llava should serve for that purpose
        std = (
            self.config.initializer_range
            if hasattr(self.config, "initializer_range")
            else self.config.text_config.initializer_range
        )

        if hasattr(module, "class_embedding"):
            module.class_embedding.data.normal_(mean=0.0, std=std)

        if isinstance(module, (nn.Linear, nn.Conv2d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    @property
    def _supports_sdpa(self):
        """

        Retrieve language_model's attribute to check whether the model supports

        SDPA or not.

        """
        return self.language_model._supports_sdpa


LLAVA_INPUTS_DOCSTRING = r"""

    Args:

        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):

            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide

            it.



            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and

            [`PreTrainedTokenizer.__call__`] for details.



            [What are input IDs?](../glossary#input-ids)

        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):

            The tensors corresponding to the input images. Pixel values can be obtained using

            [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses

            [`CLIPImageProcessor`] for processing images).

        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:



            - 1 for tokens that are **not masked**,

            - 0 for tokens that are **masked**.



            [What are attention masks?](../glossary#attention-mask)



            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and

            [`PreTrainedTokenizer.__call__`] for details.



            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see

            `past_key_values`).



            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]

            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more

            information on the default strategy.



            - 1 indicates the head is **not masked**,

            - 0 indicates the head is **masked**.

        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,

            config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)

        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):

            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape

            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape

            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.



            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention

            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.



            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that

            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all

            `decoder_input_ids` of shape `(batch_size, sequence_length)`.

        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):

            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This

            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the

            model's internal embedding lookup matrix.

        use_cache (`bool`, *optional*):

            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see

            `past_key_values`).

        output_attentions (`bool`, *optional*):

            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned

            tensors for more detail.

        output_hidden_states (`bool`, *optional*):

            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for

            more detail.

        return_dict (`bool`, *optional*):

            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.

"""


class CenturioForConditionalGeneration(LlavaPreTrainedModel):
    config_class = CenturioConfig
    _supports_cache_class = True
    _supports_quantized_cache = False
    _supports_static_cache = True

    def __init__(self, config: CenturioConfig):
        super().__init__(config)
        # self.vision_tower = AutoModel.from_config(config.vision_config)
        self.vision_tower = timm.create_model(
            config.timm_model,
            pretrained=False,
            num_classes=0,
        )
        # https://github.com/TRI-ML/prismatic-vlms/blob/main/prismatic/models/backbones/vision/base_vision.py#L125
        def unpack_tuple(fn):
            def wrapper(*args, **kwargs):
                result = fn(*args, **kwargs)
                return result[0] if isinstance(result, tuple) or isinstance(result, list) else result

            return wrapper
        self.vision_tower.forward = unpack_tuple(
            partial(
                self.vision_tower.get_intermediate_layers, n={len(self.vision_tower.blocks) - 2}
            )
        )

        config.image_hidden_size = self.vision_tower.embed_dim

        self.multi_modal_projector = LlavaMultiModalAdapter(config)
        self.vocab_size = config.text_config.vocab_size
        # if getattr(config, "delay_init", False):
        #     self.language_model = None
        # else:
        self.language_model = AutoModelForCausalLM.from_config(
            config.text_config, attn_implementation=config._attn_implementation, torch_dtype=config.torch_dtype,
            trust_remote_code = True
        )
        self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
        self.post_init()

    def tie_weights(self):
        return self.language_model.tie_weights()

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        self.language_model.set_output_embeddings(new_embeddings)

    def set_decoder(self, decoder):
        self.language_model.set_decoder(decoder)

    def get_decoder(self):
        return self.language_model.get_decoder()

    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
        model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
        # update vocab size
        self.config.text_config.vocab_size = model_embeds.num_embeddings
        self.config.vocab_size = model_embeds.num_embeddings
        self.vocab_size = model_embeds.num_embeddings
        return model_embeds

    def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels):
        num_images, num_image_patches, embed_dim = image_features.shape
        batch_size, sequence_length = input_ids.shape
        left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
        # 1. Create a mask to know where special image tokens are
        special_image_token_mask = input_ids == self.config.image_token_index
        num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)

        #check if preprocessing already expanded the number of <image_token> needed to directly replace them
        if torch.sum(special_image_token_mask) == image_features.shape[:-1].numel():
            new_inputs_embeds = inputs_embeds.clone()
            reshaped_image_hidden_states = image_features.view(-1, embed_dim)
            new_inputs_embeds[special_image_token_mask] = reshaped_image_hidden_states

            position_ids = (attention_mask.cumsum(-1) - 1).masked_fill_((attention_mask == 0), 1)

            return new_inputs_embeds, attention_mask, labels, position_ids


        # Compute the maximum embed dimension
        max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
        batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index)

        # 2. Compute the positions where text should be written
        # Calculate new positions for text tokens in merged image-text sequence.
        # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
        # `torch.cumsum` computes how each image token shifts subsequent text token positions.
        # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
        new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
        nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
        if left_padding:
            new_token_positions += nb_image_pad[:, None]  # offset for left padding
        text_to_overwrite = new_token_positions[batch_indices, non_image_indices]

        # 3. Create the full embedding, already padded to the maximum position
        final_embedding = torch.zeros(
            batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
        )
        final_attention_mask = torch.zeros(
            batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
        )
        if labels is not None:
            final_labels = torch.full(
                (batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device
            )
        # In case the Vision model or the Language model has been offloaded to CPU, we need to manually
        # set the corresponding tensors into their correct target device.
        target_device = inputs_embeds.device
        batch_indices, non_image_indices, text_to_overwrite = (
            batch_indices.to(target_device),
            non_image_indices.to(target_device),
            text_to_overwrite.to(target_device),
        )
        attention_mask = attention_mask.to(target_device)

        # 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
        # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
        final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
        final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
        if labels is not None:
            final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]

        # 5. Fill the embeddings corresponding to the images. Anything that is still zeros needs filling
        ## BUG: this does NOT work for models (Phi-3) that have set some embedding (padding) to be 0. Replaced with the below three lines.
        # image_to_overwrite = torch.all(final_embedding == 0, dim=-1)
        image_to_overwrite = torch.ones_like(final_attention_mask)
        image_to_overwrite[batch_indices, text_to_overwrite] = torch.zeros_like(attention_mask)[batch_indices, non_image_indices]
        image_to_overwrite = image_to_overwrite.bool()
        image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)

        if image_to_overwrite.sum() != image_features.shape[:-1].numel():
            raise ValueError(
                f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
                f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
            )

        final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
        final_attention_mask |= image_to_overwrite
        position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)

        if labels is None:
            final_labels = None

        return final_embedding, final_attention_mask, final_labels, position_ids

    @add_start_docstrings_to_model_forward(LLAVA_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=LlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(

        self,

        input_ids: torch.LongTensor = None,

        pixel_values: torch.FloatTensor = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_values: Optional[List[torch.FloatTensor]] = None,

        inputs_embeds: Optional[torch.FloatTensor] = None,

        labels: Optional[torch.LongTensor] = None,

        use_cache: Optional[bool] = None,

        cache_position: Optional[torch.LongTensor] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

        **kwargs

    ) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
        r"""

        Args:

            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,

                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored

                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.



        Returns:



"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if inputs_embeds is None:
            # 1. Extra the input embeddings
            inputs_embeds = self.get_input_embeddings()(input_ids)

            # 2. Merge text and images
            if pixel_values is not None and input_ids.shape[1] != 1:
                image_outputs = self.vision_tower(pixel_values)

                image_features = self.multi_modal_projector(image_outputs)
                image_features = image_features.to(inputs_embeds.dtype)
                inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features(
                    image_features, inputs_embeds, input_ids, attention_mask, labels
                )
                if labels is None:
                    labels = torch.full_like(attention_mask, self.config.ignore_index).to(torch.long)
            else:
                # In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
                # generation with cache
                if past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
                    if isinstance(past_key_values, Cache):
                        first_layer_past_key_value = past_key_values.key_cache[0][:, :, :, 0]
                    else:
                        first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]

                    target_seqlen = first_layer_past_key_value.shape[-1] + 1
                    extended_attention_mask = torch.ones(
                        (attention_mask.shape[0], target_seqlen - attention_mask.shape[1]),
                        dtype=attention_mask.dtype,
                        device=attention_mask.device,
                    )
                    attention_mask = torch.cat((attention_mask, extended_attention_mask), dim=1)



                    position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
                    # cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)[
                    #     -target_length:
                    # ]

        outputs = self.language_model(
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            # cache_position=cache_position,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = outputs[0]

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            if attention_mask is not None:
                shift_attention_mask = attention_mask[..., 1:]
                shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
                shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
            else:
                shift_logits = logits[..., :-1, :].contiguous()
                shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
            )

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return LlavaCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            labels=labels,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(

        self,

        input_ids,

        past_key_values=None,

        inputs_embeds=None,

        pixel_values=None,

        attention_mask=None,

        cache_position=None,

        use_cache=True,

        position_ids=None,

        **kwargs

    ):
        model_inputs = self.language_model.prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            cache_position=cache_position,
            **kwargs,
        )
        #Ugly comparison. Should use a config var that knows how many image tokens we have like HF does.
        # But we are unlikely to use >30 images in one sample or use <=30 tokens per image.
        if cache_position[0] == 0:
            model_inputs["pixel_values"] = pixel_values
        # "legacy" mode
        if (input_ids == self.config.image_token_index).sum(1).max() < 30:
            if past_key_values is not None:
                if isinstance(past_key_values, Cache):
                    # branch for Gemma2 with hybrid cache
                    if past_key_values.seen_tokens is None:
                        past_length = cache_position[0] # torch.tensor(0, device=input_ids.device)
                        max_cache_length = (
                            torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
                            if past_key_values.get_max_length() is not None
                            else None
                        )
                        cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
                    # old default branch
                    else:
                        cache_length = past_key_values.get_seq_length()
                        past_length = past_key_values.seen_tokens

                else:
                    cache_length = past_length = past_key_values[0][0].shape[2]

                # Keep only the unprocessed tokens:
                # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
                # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
                # input)
                if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
                    input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
                # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
                # input_ids based on the past_length.
                elif past_length < input_ids.shape[1]:
                    input_ids = input_ids[:, past_length:]
                # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
                elif self.config.image_token_index in input_ids:
                    input_ids = input_ids[:, input_ids.shape[1] - 1 :]
                # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
                # older attention values, as their corresponding values are not part of the input.
                # if cache_length < past_length and attention_mask is not None:
                #     attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
            if attention_mask is not None and position_ids is None:
                # create position_ids on the fly for batch generation
                position_ids = attention_mask.long().cumsum(-1) - 1
                position_ids.masked_fill_(attention_mask == 0, 1)
                if past_key_values:
                    position_ids = position_ids[:, -input_ids.shape[1] :]

            # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
            if inputs_embeds is not None and past_key_values is None:
                model_inputs = {"inputs_embeds": inputs_embeds}
            else:
                model_inputs = {"input_ids": input_ids}

            # if cache_position[0] == 0 or (input_ids == self.config.image_token_index).sum(1).max() > 0:
            model_inputs.update(
                {
                    "position_ids": position_ids,
                    "past_key_values": past_key_values,
                    "attention_mask": attention_mask,
                    "use_cache": use_cache,
                    "pixel_values": pixel_values,
                }
            )
        return model_inputs

    def _reorder_cache(self, *args, **kwargs):
        return self.language_model._reorder_cache(*args, **kwargs)