Upload 3 files
Browse files- __init__.py +0 -0
- modeling_centurio.py +768 -0
__init__.py
ADDED
File without changes
|
modeling_centurio.py
ADDED
@@ -0,0 +1,768 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ADAPTED FROM https://raw.githubusercontent.com/huggingface/transformers/main/src/transformers/models/llava/modeling_llava.py
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2023 the HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" PyTorch Llava model."""
|
17 |
+
import math
|
18 |
+
|
19 |
+
import logging
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from functools import partial
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import timm
|
25 |
+
import torch
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from transformers import LlavaConfig, PreTrainedModel, add_start_docstrings, AutoModel, AutoModelForCausalLM, Cache, \
|
29 |
+
T5ForConditionalGeneration, HybridCache, Gemma2ForCausalLM
|
30 |
+
from transformers.utils import ModelOutput, add_start_docstrings_to_model_forward, replace_return_docstrings
|
31 |
+
|
32 |
+
from transformers import LlavaConfig
|
33 |
+
from transformers.activations import ACT2FN
|
34 |
+
import torch
|
35 |
+
from einops import rearrange, repeat
|
36 |
+
from torch import einsum, nn
|
37 |
+
|
38 |
+
from .configuration_centurio import CenturioConfig
|
39 |
+
|
40 |
+
class LlavaMLPProjector(nn.Module):
|
41 |
+
def __init__(self, config: LlavaConfig):
|
42 |
+
super().__init__()
|
43 |
+
|
44 |
+
self.linear_1 = nn.Linear(config.image_hidden_size, config.text_config.hidden_size, bias=True)
|
45 |
+
self.act = ACT2FN["gelu"]
|
46 |
+
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
47 |
+
|
48 |
+
def forward(self, image_features):
|
49 |
+
hidden_states = self.linear_1(image_features)
|
50 |
+
hidden_states = self.act(hidden_states)
|
51 |
+
hidden_states = self.linear_2(hidden_states)
|
52 |
+
return hidden_states
|
53 |
+
|
54 |
+
class LlavaMultiModalAdapter(nn.Module):
|
55 |
+
def __init__(self, config: LlavaConfig):
|
56 |
+
super().__init__()
|
57 |
+
|
58 |
+
if config.adapter_type == "window-pool":
|
59 |
+
self.adapter = WindowPoolProjector(config)
|
60 |
+
elif config.adapter_type == "window-shuffel":
|
61 |
+
self.adapter = WindowShuffelProjector(config)
|
62 |
+
elif config.adapter_type == "multiscale-pool":
|
63 |
+
self.adapter = MultiscalePoolProjector(config)
|
64 |
+
elif config.adapter_type == "multiscale-shuffel":
|
65 |
+
self.adapter = MultiscaleShuffleProjector(config)
|
66 |
+
else:
|
67 |
+
self.adapter = LlavaMLPProjector(config)
|
68 |
+
|
69 |
+
def forward(self, image_features):
|
70 |
+
return self.adapter(image_features)
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
class WindowMLPProjector(nn.Module):
|
75 |
+
def __init__(self, config: LlavaConfig):
|
76 |
+
super().__init__()
|
77 |
+
self.multi_scale = getattr(config, "adapter_multi_scale", 2)
|
78 |
+
self.linear_1 = nn.Linear(config.image_hidden_size, config.text_config.hidden_size, bias=True)
|
79 |
+
self.act = ACT2FN["gelu"]
|
80 |
+
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
81 |
+
|
82 |
+
def forward(self, image_features):
|
83 |
+
hidden_states = self.linear_1(image_features)
|
84 |
+
hidden_states = self.act(hidden_states)
|
85 |
+
hidden_states = self.linear_2(hidden_states)
|
86 |
+
|
87 |
+
windows = 1 + self.multi_scale**2
|
88 |
+
hidden_states = rearrange(hidden_states, "(b h) w d -> b (h w) d", h=windows)
|
89 |
+
|
90 |
+
return hidden_states
|
91 |
+
|
92 |
+
|
93 |
+
class WindowPoolProjector(nn.Module):
|
94 |
+
def __init__(self, config: LlavaConfig):
|
95 |
+
super().__init__()
|
96 |
+
self.multi_scale = getattr(config, "adapter_multi_scale", 2)
|
97 |
+
self.pool = nn.AdaptiveAvgPool2d(getattr(config, "adapter_pool", 8))
|
98 |
+
self.linear_1 = nn.Linear(config.image_hidden_size, config.text_config.hidden_size, bias=True)
|
99 |
+
self.act = ACT2FN["gelu"]
|
100 |
+
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
101 |
+
|
102 |
+
def forward(self, image_features):
|
103 |
+
hidden_states = self.linear_1(image_features)
|
104 |
+
hidden_states = self.act(hidden_states)
|
105 |
+
hidden_states = self.linear_2(hidden_states)
|
106 |
+
|
107 |
+
b, num_tokens, c = hidden_states.shape
|
108 |
+
h = int(math.sqrt(num_tokens))
|
109 |
+
|
110 |
+
hidden_states = rearrange(hidden_states, "b (h w) d -> b d h w", h=h, w=h)
|
111 |
+
hidden_states = self.pool(hidden_states)
|
112 |
+
hidden_states = rearrange(hidden_states, "b d h w -> b (h w) d")
|
113 |
+
|
114 |
+
windows = 1 + self.multi_scale**2
|
115 |
+
hidden_states = rearrange(hidden_states, "(b h) w d -> b (h w) d", h=windows)
|
116 |
+
return hidden_states
|
117 |
+
|
118 |
+
|
119 |
+
class WindowShuffelProjector(nn.Module):
|
120 |
+
def __init__(self, config: LlavaConfig):
|
121 |
+
super().__init__()
|
122 |
+
self.multi_scale = getattr(config, "adapter_multi_scale", 2)
|
123 |
+
self.scale_factor = getattr(config, "adapter_pool", 2)
|
124 |
+
self.pixel_unshuffel = nn.PixelUnshuffle(self.scale_factor)
|
125 |
+
self.linear_1 = nn.Linear(config.image_hidden_size*(self.scale_factor**2), config.text_config.hidden_size, bias=True)
|
126 |
+
self.act = ACT2FN["gelu"]
|
127 |
+
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
def forward(self, image_features):
|
132 |
+
bsz, seq, embed_dim = image_features.size()
|
133 |
+
height = width = int(seq ** 0.5)
|
134 |
+
hidden_states = rearrange(image_features, "b (w h) d -> b d w h", w=width, h=height)
|
135 |
+
hidden_states = self.pixel_unshuffel(hidden_states)
|
136 |
+
hidden_states = rearrange(hidden_states, "b d w h -> b (w h) d")
|
137 |
+
|
138 |
+
hidden_states = self.linear_1(hidden_states)
|
139 |
+
hidden_states = self.act(hidden_states)
|
140 |
+
hidden_states = self.linear_2(hidden_states)
|
141 |
+
|
142 |
+
windows = 1 + self.multi_scale ** 2
|
143 |
+
hidden_states = rearrange(hidden_states, "(b h) w d -> b (h w) d", h=windows)
|
144 |
+
return hidden_states
|
145 |
+
|
146 |
+
|
147 |
+
class MultiscalePoolProjector(nn.Module):
|
148 |
+
def __init__(self, config: LlavaConfig):
|
149 |
+
super().__init__()
|
150 |
+
|
151 |
+
self.multi_scale = getattr(config, "adapter_multi_scale", 2)
|
152 |
+
self.pool = nn.AvgPool2d(self.multi_scale)
|
153 |
+
self.linear_1 = nn.Linear(config.image_hidden_size*2, config.text_config.hidden_size, bias=True)
|
154 |
+
self.act = ACT2FN["gelu"]
|
155 |
+
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
156 |
+
|
157 |
+
def forward(self, image_features):
|
158 |
+
b, num_tokens, c = image_features.shape
|
159 |
+
h = int(math.sqrt(num_tokens))
|
160 |
+
assert h * h == num_tokens
|
161 |
+
image_features = rearrange(image_features, "b (h w) d -> b d h w", h=h, w=h)
|
162 |
+
|
163 |
+
steps = 1 + self.multi_scale**2
|
164 |
+
low_res_features = image_features[::steps]
|
165 |
+
high_res_features = image_features[[i for i in range(image_features.size(0)) if i%steps > 0]]
|
166 |
+
|
167 |
+
merged_features = rearrange(high_res_features, "(b m) d h w -> b d h (m w)", m=self.multi_scale)
|
168 |
+
merged_features = rearrange(merged_features, "(b m) d h w -> b d (m h) w", m=self.multi_scale)
|
169 |
+
|
170 |
+
merged_features = self.pool(merged_features)
|
171 |
+
|
172 |
+
concat_features = torch.cat([low_res_features, merged_features], dim=1)
|
173 |
+
concat_features = rearrange(concat_features, "b d h w -> b (h w) d")
|
174 |
+
|
175 |
+
hidden_states = self.linear_1(concat_features)
|
176 |
+
hidden_states = self.act(hidden_states)
|
177 |
+
hidden_states = self.linear_2(hidden_states)
|
178 |
+
return hidden_states
|
179 |
+
|
180 |
+
class MultiscaleShuffleProjector(nn.Module):
|
181 |
+
def __init__(self, config):
|
182 |
+
super().__init__()
|
183 |
+
|
184 |
+
self.multi_scale = getattr(config, "adapter_multi_scale", 2)
|
185 |
+
self.shuffle = nn.PixelUnshuffle(self.multi_scale)
|
186 |
+
|
187 |
+
inc, ouc = config.image_hidden_size*(1+self.multi_scale**2), config.text_config.hidden_size
|
188 |
+
#
|
189 |
+
self.mlp = nn.Sequential(
|
190 |
+
nn.Linear(inc, ouc), nn.GELU(), nn.Linear(ouc, ouc)
|
191 |
+
)
|
192 |
+
|
193 |
+
self.dwn = nn.AvgPool2d(2) #TokenDownLayer((12, 12))
|
194 |
+
self.peg = nn.Conv2d(ouc, ouc, 3, 1, 1, bias=True, groups=ouc) #PosInjectLayer(ouc, ouc, stride=1)
|
195 |
+
|
196 |
+
def forward(self, x):
|
197 |
+
b, num_tokens, c = x.shape
|
198 |
+
h = int(math.sqrt(num_tokens))
|
199 |
+
assert h * h == num_tokens
|
200 |
+
image_features = rearrange(x, "b (h w) d -> b d h w", h=h, w=h)
|
201 |
+
|
202 |
+
steps = 1 + self.multi_scale ** 2
|
203 |
+
low_res_features = image_features[::steps]
|
204 |
+
high_res_features = image_features[[i for i in range(image_features.size(0)) if i % steps > 0]]
|
205 |
+
|
206 |
+
merged_features = rearrange(high_res_features, "(b m) d h w -> b d h (m w)", m=self.multi_scale)
|
207 |
+
merged_features = rearrange(merged_features, "(b m) d h w -> b d (m h) w", m=self.multi_scale)
|
208 |
+
|
209 |
+
merged_features = self.shuffle(merged_features)
|
210 |
+
|
211 |
+
concat_features = torch.cat([low_res_features, merged_features], dim=1)
|
212 |
+
concat_features = rearrange(concat_features, "b d h w -> b (h w) d")
|
213 |
+
|
214 |
+
x = self.mlp(concat_features)
|
215 |
+
|
216 |
+
# x = self.dwn(x)
|
217 |
+
b, num_tokens, c = x.shape
|
218 |
+
h = int(math.sqrt(num_tokens))
|
219 |
+
assert h * h == num_tokens
|
220 |
+
x = rearrange(x, "b (h w) d -> b d h w", h=h, w=h) #x.permute(0, 2, 1).reshape(b, -1, h, h)
|
221 |
+
x = self.dwn(x)
|
222 |
+
x = self.peg(x) + x
|
223 |
+
x = rearrange(x, "b d h w -> b (h w) d") #x.flatten(2).transpose(1, 2)
|
224 |
+
|
225 |
+
return x
|
226 |
+
#
|
227 |
+
|
228 |
+
_CONFIG_FOR_DOC = "LlavaConfig"
|
229 |
+
|
230 |
+
LLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
231 |
+
"llava-hf/llava-1.5-7b-hf",
|
232 |
+
"llava-hf/llava-1.5-13b-hf",
|
233 |
+
"llava-hf/bakLlava-v1-hf",
|
234 |
+
# See all Llava models at https://huggingface.co/models?filter=llava
|
235 |
+
]
|
236 |
+
|
237 |
+
|
238 |
+
@dataclass
|
239 |
+
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Llava
|
240 |
+
class LlavaCausalLMOutputWithPast(ModelOutput):
|
241 |
+
"""
|
242 |
+
Base class for Llava causal language model (or autoregressive) outputs.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
246 |
+
Language modeling loss (for next-token prediction).
|
247 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
248 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
249 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
250 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
251 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
252 |
+
|
253 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
254 |
+
`past_key_values` input) to speed up sequential decoding.
|
255 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
256 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
257 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
258 |
+
|
259 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
260 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
261 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
262 |
+
sequence_length)`.
|
263 |
+
|
264 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
265 |
+
heads.
|
266 |
+
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
267 |
+
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
|
268 |
+
sequence_length, hidden_size)`.
|
269 |
+
|
270 |
+
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
|
271 |
+
"""
|
272 |
+
|
273 |
+
loss: Optional[torch.FloatTensor] = None
|
274 |
+
logits: torch.FloatTensor = None
|
275 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
276 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
277 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
278 |
+
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
279 |
+
labels: Optional[torch.LongTensor] = None
|
280 |
+
|
281 |
+
|
282 |
+
|
283 |
+
LLAVA_START_DOCSTRING = r"""
|
284 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
285 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
286 |
+
etc.)
|
287 |
+
|
288 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
289 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
290 |
+
and behavior.
|
291 |
+
|
292 |
+
Parameters:
|
293 |
+
config ([`LlavaConfig`] or [`LlavaVisionConfig`]):
|
294 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
295 |
+
load the weights associated with the model, only the configuration. Check out the
|
296 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
297 |
+
"""
|
298 |
+
|
299 |
+
|
300 |
+
@add_start_docstrings(
|
301 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
302 |
+
LLAVA_START_DOCSTRING,
|
303 |
+
)
|
304 |
+
class LlavaPreTrainedModel(PreTrainedModel):
|
305 |
+
config_class = LlavaConfig
|
306 |
+
base_model_prefix = "model"
|
307 |
+
supports_gradient_checkpointing = True
|
308 |
+
_no_split_modules = ["LlavaVisionAttention"]
|
309 |
+
_skip_keys_device_placement = "past_key_values"
|
310 |
+
_supports_flash_attn_2 = True
|
311 |
+
|
312 |
+
def _init_weights(self, module):
|
313 |
+
# important: this ported version of Llava isn't meant for training from scratch - only
|
314 |
+
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
|
315 |
+
# https://github.com/haotian-liu/LLaVA/tree/main/llava should serve for that purpose
|
316 |
+
std = (
|
317 |
+
self.config.initializer_range
|
318 |
+
if hasattr(self.config, "initializer_range")
|
319 |
+
else self.config.text_config.initializer_range
|
320 |
+
)
|
321 |
+
|
322 |
+
if hasattr(module, "class_embedding"):
|
323 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
324 |
+
|
325 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
326 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
327 |
+
if module.bias is not None:
|
328 |
+
module.bias.data.zero_()
|
329 |
+
elif isinstance(module, nn.Embedding):
|
330 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
331 |
+
if module.padding_idx is not None:
|
332 |
+
module.weight.data[module.padding_idx].zero_()
|
333 |
+
|
334 |
+
@property
|
335 |
+
def _supports_sdpa(self):
|
336 |
+
"""
|
337 |
+
Retrieve language_model's attribute to check whether the model supports
|
338 |
+
SDPA or not.
|
339 |
+
"""
|
340 |
+
return self.language_model._supports_sdpa
|
341 |
+
|
342 |
+
|
343 |
+
LLAVA_INPUTS_DOCSTRING = r"""
|
344 |
+
Args:
|
345 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
346 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
347 |
+
it.
|
348 |
+
|
349 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
350 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
351 |
+
|
352 |
+
[What are input IDs?](../glossary#input-ids)
|
353 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
|
354 |
+
The tensors corresponding to the input images. Pixel values can be obtained using
|
355 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses
|
356 |
+
[`CLIPImageProcessor`] for processing images).
|
357 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
358 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
359 |
+
|
360 |
+
- 1 for tokens that are **not masked**,
|
361 |
+
- 0 for tokens that are **masked**.
|
362 |
+
|
363 |
+
[What are attention masks?](../glossary#attention-mask)
|
364 |
+
|
365 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
366 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
367 |
+
|
368 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
369 |
+
`past_key_values`).
|
370 |
+
|
371 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
372 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
373 |
+
information on the default strategy.
|
374 |
+
|
375 |
+
- 1 indicates the head is **not masked**,
|
376 |
+
- 0 indicates the head is **masked**.
|
377 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
378 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
379 |
+
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
380 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
381 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
382 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
383 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
384 |
+
|
385 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
386 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
387 |
+
|
388 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
389 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
390 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
391 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
392 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
393 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
394 |
+
model's internal embedding lookup matrix.
|
395 |
+
use_cache (`bool`, *optional*):
|
396 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
397 |
+
`past_key_values`).
|
398 |
+
output_attentions (`bool`, *optional*):
|
399 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
400 |
+
tensors for more detail.
|
401 |
+
output_hidden_states (`bool`, *optional*):
|
402 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
403 |
+
more detail.
|
404 |
+
return_dict (`bool`, *optional*):
|
405 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
406 |
+
"""
|
407 |
+
|
408 |
+
|
409 |
+
class CenturioForConditionalGeneration(LlavaPreTrainedModel):
|
410 |
+
config_class = CenturioConfig
|
411 |
+
_supports_cache_class = True
|
412 |
+
_supports_quantized_cache = False
|
413 |
+
_supports_static_cache = True
|
414 |
+
|
415 |
+
def __init__(self, config: CenturioConfig):
|
416 |
+
super().__init__(config)
|
417 |
+
# self.vision_tower = AutoModel.from_config(config.vision_config)
|
418 |
+
self.vision_tower = timm.create_model(
|
419 |
+
config.timm_model,
|
420 |
+
pretrained=False,
|
421 |
+
num_classes=0,
|
422 |
+
)
|
423 |
+
# https://github.com/TRI-ML/prismatic-vlms/blob/main/prismatic/models/backbones/vision/base_vision.py#L125
|
424 |
+
def unpack_tuple(fn):
|
425 |
+
def wrapper(*args, **kwargs):
|
426 |
+
result = fn(*args, **kwargs)
|
427 |
+
return result[0] if isinstance(result, tuple) or isinstance(result, list) else result
|
428 |
+
|
429 |
+
return wrapper
|
430 |
+
self.vision_tower.forward = unpack_tuple(
|
431 |
+
partial(
|
432 |
+
self.vision_tower.get_intermediate_layers, n={len(self.vision_tower.blocks) - 2}
|
433 |
+
)
|
434 |
+
)
|
435 |
+
|
436 |
+
config.image_hidden_size = self.vision_tower.embed_dim
|
437 |
+
|
438 |
+
self.multi_modal_projector = LlavaMultiModalAdapter(config)
|
439 |
+
self.vocab_size = config.text_config.vocab_size
|
440 |
+
# if getattr(config, "delay_init", False):
|
441 |
+
# self.language_model = None
|
442 |
+
# else:
|
443 |
+
self.language_model = AutoModelForCausalLM.from_config(
|
444 |
+
config.text_config, attn_implementation=config._attn_implementation, torch_dtype=config.torch_dtype,
|
445 |
+
trust_remote_code = True
|
446 |
+
)
|
447 |
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
448 |
+
self.post_init()
|
449 |
+
|
450 |
+
|
451 |
+
|
452 |
+
def get_input_embeddings(self):
|
453 |
+
return self.language_model.get_input_embeddings()
|
454 |
+
|
455 |
+
def set_input_embeddings(self, value):
|
456 |
+
self.language_model.set_input_embeddings(value)
|
457 |
+
|
458 |
+
def get_output_embeddings(self):
|
459 |
+
return self.language_model.get_output_embeddings()
|
460 |
+
|
461 |
+
def set_output_embeddings(self, new_embeddings):
|
462 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
463 |
+
|
464 |
+
def set_decoder(self, decoder):
|
465 |
+
self.language_model.set_decoder(decoder)
|
466 |
+
|
467 |
+
def get_decoder(self):
|
468 |
+
return self.language_model.get_decoder()
|
469 |
+
|
470 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
471 |
+
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
472 |
+
# update vocab size
|
473 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
474 |
+
self.config.vocab_size = model_embeds.num_embeddings
|
475 |
+
self.vocab_size = model_embeds.num_embeddings
|
476 |
+
return model_embeds
|
477 |
+
|
478 |
+
def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels):
|
479 |
+
num_images, num_image_patches, embed_dim = image_features.shape
|
480 |
+
batch_size, sequence_length = input_ids.shape
|
481 |
+
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
|
482 |
+
# 1. Create a mask to know where special image tokens are
|
483 |
+
special_image_token_mask = input_ids == self.config.image_token_index
|
484 |
+
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
|
485 |
+
|
486 |
+
#check if preprocessing already expanded the number of <image_token> needed to directly replace them
|
487 |
+
if torch.sum(special_image_token_mask) == image_features.shape[:-1].numel():
|
488 |
+
new_inputs_embeds = inputs_embeds.clone()
|
489 |
+
reshaped_image_hidden_states = image_features.view(-1, embed_dim)
|
490 |
+
new_inputs_embeds[special_image_token_mask] = reshaped_image_hidden_states
|
491 |
+
|
492 |
+
position_ids = (attention_mask.cumsum(-1) - 1).masked_fill_((attention_mask == 0), 1)
|
493 |
+
|
494 |
+
return new_inputs_embeds, attention_mask, labels, position_ids
|
495 |
+
|
496 |
+
|
497 |
+
# Compute the maximum embed dimension
|
498 |
+
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
|
499 |
+
batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index)
|
500 |
+
|
501 |
+
# 2. Compute the positions where text should be written
|
502 |
+
# Calculate new positions for text tokens in merged image-text sequence.
|
503 |
+
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
|
504 |
+
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
|
505 |
+
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
506 |
+
new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
|
507 |
+
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
|
508 |
+
if left_padding:
|
509 |
+
new_token_positions += nb_image_pad[:, None] # offset for left padding
|
510 |
+
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
|
511 |
+
|
512 |
+
# 3. Create the full embedding, already padded to the maximum position
|
513 |
+
final_embedding = torch.zeros(
|
514 |
+
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
515 |
+
)
|
516 |
+
final_attention_mask = torch.zeros(
|
517 |
+
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
|
518 |
+
)
|
519 |
+
if labels is not None:
|
520 |
+
final_labels = torch.full(
|
521 |
+
(batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device
|
522 |
+
)
|
523 |
+
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
524 |
+
# set the corresponding tensors into their correct target device.
|
525 |
+
target_device = inputs_embeds.device
|
526 |
+
batch_indices, non_image_indices, text_to_overwrite = (
|
527 |
+
batch_indices.to(target_device),
|
528 |
+
non_image_indices.to(target_device),
|
529 |
+
text_to_overwrite.to(target_device),
|
530 |
+
)
|
531 |
+
attention_mask = attention_mask.to(target_device)
|
532 |
+
|
533 |
+
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
|
534 |
+
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
|
535 |
+
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
|
536 |
+
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
|
537 |
+
if labels is not None:
|
538 |
+
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
|
539 |
+
|
540 |
+
# 5. Fill the embeddings corresponding to the images. Anything that is still zeros needs filling
|
541 |
+
## BUG: this does NOT work for models (Phi-3) that have set some embedding (padding) to be 0. Replaced with the below three lines.
|
542 |
+
# image_to_overwrite = torch.all(final_embedding == 0, dim=-1)
|
543 |
+
image_to_overwrite = torch.ones_like(final_attention_mask)
|
544 |
+
image_to_overwrite[batch_indices, text_to_overwrite] = torch.zeros_like(attention_mask)[batch_indices, non_image_indices]
|
545 |
+
image_to_overwrite = image_to_overwrite.bool()
|
546 |
+
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)
|
547 |
+
|
548 |
+
if image_to_overwrite.sum() != image_features.shape[:-1].numel():
|
549 |
+
raise ValueError(
|
550 |
+
f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
|
551 |
+
f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
|
552 |
+
)
|
553 |
+
|
554 |
+
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
555 |
+
final_attention_mask |= image_to_overwrite
|
556 |
+
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
|
557 |
+
|
558 |
+
if labels is None:
|
559 |
+
final_labels = None
|
560 |
+
|
561 |
+
return final_embedding, final_attention_mask, final_labels, position_ids
|
562 |
+
|
563 |
+
@add_start_docstrings_to_model_forward(LLAVA_INPUTS_DOCSTRING)
|
564 |
+
@replace_return_docstrings(output_type=LlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
565 |
+
def forward(
|
566 |
+
self,
|
567 |
+
input_ids: torch.LongTensor = None,
|
568 |
+
pixel_values: torch.FloatTensor = None,
|
569 |
+
attention_mask: Optional[torch.Tensor] = None,
|
570 |
+
position_ids: Optional[torch.LongTensor] = None,
|
571 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
572 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
573 |
+
labels: Optional[torch.LongTensor] = None,
|
574 |
+
use_cache: Optional[bool] = None,
|
575 |
+
cache_position: Optional[torch.LongTensor] = None,
|
576 |
+
output_attentions: Optional[bool] = None,
|
577 |
+
output_hidden_states: Optional[bool] = None,
|
578 |
+
return_dict: Optional[bool] = None,
|
579 |
+
**kwargs
|
580 |
+
) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
|
581 |
+
r"""
|
582 |
+
Args:
|
583 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
584 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
585 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
586 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
587 |
+
|
588 |
+
Returns:
|
589 |
+
|
590 |
+
"""
|
591 |
+
|
592 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
593 |
+
output_hidden_states = (
|
594 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
595 |
+
)
|
596 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
597 |
+
|
598 |
+
if inputs_embeds is None:
|
599 |
+
# 1. Extra the input embeddings
|
600 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
601 |
+
|
602 |
+
# 2. Merge text and images
|
603 |
+
if pixel_values is not None and input_ids.shape[1] != 1:
|
604 |
+
image_outputs = self.vision_tower(pixel_values)
|
605 |
+
|
606 |
+
image_features = self.multi_modal_projector(image_outputs)
|
607 |
+
image_features = image_features.to(inputs_embeds.dtype)
|
608 |
+
inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features(
|
609 |
+
image_features, inputs_embeds, input_ids, attention_mask, labels
|
610 |
+
)
|
611 |
+
if labels is None:
|
612 |
+
labels = torch.full_like(attention_mask, self.config.ignore_index).to(torch.long)
|
613 |
+
else:
|
614 |
+
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
|
615 |
+
# generation with cache
|
616 |
+
if past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
|
617 |
+
if isinstance(past_key_values, Cache):
|
618 |
+
first_layer_past_key_value = past_key_values.key_cache[0][:, :, :, 0]
|
619 |
+
else:
|
620 |
+
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
|
621 |
+
|
622 |
+
target_seqlen = first_layer_past_key_value.shape[-1] + 1
|
623 |
+
extended_attention_mask = torch.ones(
|
624 |
+
(attention_mask.shape[0], target_seqlen - attention_mask.shape[1]),
|
625 |
+
dtype=attention_mask.dtype,
|
626 |
+
device=attention_mask.device,
|
627 |
+
)
|
628 |
+
attention_mask = torch.cat((attention_mask, extended_attention_mask), dim=1)
|
629 |
+
|
630 |
+
|
631 |
+
|
632 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
633 |
+
# cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)[
|
634 |
+
# -target_length:
|
635 |
+
# ]
|
636 |
+
|
637 |
+
outputs = self.language_model(
|
638 |
+
attention_mask=attention_mask,
|
639 |
+
position_ids=position_ids,
|
640 |
+
past_key_values=past_key_values,
|
641 |
+
inputs_embeds=inputs_embeds,
|
642 |
+
use_cache=use_cache,
|
643 |
+
# cache_position=cache_position,
|
644 |
+
output_attentions=output_attentions,
|
645 |
+
output_hidden_states=output_hidden_states,
|
646 |
+
return_dict=return_dict,
|
647 |
+
)
|
648 |
+
|
649 |
+
logits = outputs[0]
|
650 |
+
|
651 |
+
loss = None
|
652 |
+
if labels is not None:
|
653 |
+
# Shift so that tokens < n predict n
|
654 |
+
if attention_mask is not None:
|
655 |
+
shift_attention_mask = attention_mask[..., 1:]
|
656 |
+
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
|
657 |
+
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
|
658 |
+
else:
|
659 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
660 |
+
shift_labels = labels[..., 1:].contiguous()
|
661 |
+
# Flatten the tokens
|
662 |
+
loss_fct = nn.CrossEntropyLoss()
|
663 |
+
loss = loss_fct(
|
664 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
|
665 |
+
)
|
666 |
+
|
667 |
+
if not return_dict:
|
668 |
+
output = (logits,) + outputs[1:]
|
669 |
+
return (loss,) + output if loss is not None else output
|
670 |
+
|
671 |
+
return LlavaCausalLMOutputWithPast(
|
672 |
+
loss=loss,
|
673 |
+
logits=logits,
|
674 |
+
labels=labels,
|
675 |
+
past_key_values=outputs.past_key_values,
|
676 |
+
hidden_states=outputs.hidden_states,
|
677 |
+
attentions=outputs.attentions,
|
678 |
+
)
|
679 |
+
|
680 |
+
def prepare_inputs_for_generation(
|
681 |
+
self,
|
682 |
+
input_ids,
|
683 |
+
past_key_values=None,
|
684 |
+
inputs_embeds=None,
|
685 |
+
pixel_values=None,
|
686 |
+
attention_mask=None,
|
687 |
+
cache_position=None,
|
688 |
+
use_cache=True,
|
689 |
+
position_ids=None,
|
690 |
+
**kwargs
|
691 |
+
):
|
692 |
+
model_inputs = self.language_model.prepare_inputs_for_generation(
|
693 |
+
input_ids,
|
694 |
+
past_key_values=past_key_values,
|
695 |
+
inputs_embeds=inputs_embeds,
|
696 |
+
attention_mask=attention_mask,
|
697 |
+
cache_position=cache_position,
|
698 |
+
**kwargs,
|
699 |
+
)
|
700 |
+
#Ugly comparison. Should use a config var that knows how many image tokens we have like HF does.
|
701 |
+
# But we are unlikely to use >30 images in one sample or use <=30 tokens per image.
|
702 |
+
if cache_position[0] == 0:
|
703 |
+
model_inputs["pixel_values"] = pixel_values
|
704 |
+
# "legacy" mode
|
705 |
+
if (input_ids == self.config.image_token_index).sum(1).max() < 30:
|
706 |
+
if past_key_values is not None:
|
707 |
+
if isinstance(past_key_values, Cache):
|
708 |
+
# branch for Gemma2 with hybrid cache
|
709 |
+
if past_key_values.seen_tokens is None:
|
710 |
+
past_length = cache_position[0] # torch.tensor(0, device=input_ids.device)
|
711 |
+
max_cache_length = (
|
712 |
+
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
713 |
+
if past_key_values.get_max_length() is not None
|
714 |
+
else None
|
715 |
+
)
|
716 |
+
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
|
717 |
+
# old default branch
|
718 |
+
else:
|
719 |
+
cache_length = past_key_values.get_seq_length()
|
720 |
+
past_length = past_key_values.seen_tokens
|
721 |
+
|
722 |
+
else:
|
723 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
724 |
+
|
725 |
+
# Keep only the unprocessed tokens:
|
726 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
727 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
728 |
+
# input)
|
729 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
730 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
731 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
732 |
+
# input_ids based on the past_length.
|
733 |
+
elif past_length < input_ids.shape[1]:
|
734 |
+
input_ids = input_ids[:, past_length:]
|
735 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
736 |
+
elif self.config.image_token_index in input_ids:
|
737 |
+
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
|
738 |
+
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
|
739 |
+
# older attention values, as their corresponding values are not part of the input.
|
740 |
+
# if cache_length < past_length and attention_mask is not None:
|
741 |
+
# attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
|
742 |
+
if attention_mask is not None and position_ids is None:
|
743 |
+
# create position_ids on the fly for batch generation
|
744 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
745 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
746 |
+
if past_key_values:
|
747 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
748 |
+
|
749 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
750 |
+
if inputs_embeds is not None and past_key_values is None:
|
751 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
752 |
+
else:
|
753 |
+
model_inputs = {"input_ids": input_ids}
|
754 |
+
|
755 |
+
# if cache_position[0] == 0 or (input_ids == self.config.image_token_index).sum(1).max() > 0:
|
756 |
+
model_inputs.update(
|
757 |
+
{
|
758 |
+
"position_ids": position_ids,
|
759 |
+
"past_key_values": past_key_values,
|
760 |
+
"attention_mask": attention_mask,
|
761 |
+
"use_cache": use_cache,
|
762 |
+
"pixel_values": pixel_values,
|
763 |
+
}
|
764 |
+
)
|
765 |
+
return model_inputs
|
766 |
+
|
767 |
+
def _reorder_cache(self, *args, **kwargs):
|
768 |
+
return self.language_model._reorder_cache(*args, **kwargs)
|