Wintersmith's picture
End of training
f4838f7
metadata
license: apache-2.0
base_model: distilbert/distilbert-base-uncased-finetuned-sst-2-english
tags:
  - generated_from_keras_callback
model-index:
  - name: Wintersmith/LLM_generated_text_detector
    results: []

Wintersmith/LLM_generated_text_detector

This model is a fine-tuned version of distilbert/distilbert-base-uncased-finetuned-sst-2-english on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0082
  • Train Accuracy: 0.9974
  • Validation Loss: 0.0191
  • Validation Accuracy: 0.9941
  • Epoch: 1

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 3630, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.0579 0.9809 0.0272 0.9920 0
0.0082 0.9974 0.0191 0.9941 1

Framework versions

  • Transformers 4.37.0
  • TensorFlow 2.15.0
  • Datasets 2.15.0
  • Tokenizers 0.15.1